Author: Martin Carl Steele
Publisher:
ISBN:
Category : Plasma (Ionized gases)
Languages : en
Pages : 310
Book Description
Wave Interactions in Solid State Plasmas
Author: Martin Carl Steele
Publisher:
ISBN:
Category : Plasma (Ionized gases)
Languages : en
Pages : 310
Book Description
Publisher:
ISBN:
Category : Plasma (Ionized gases)
Languages : en
Pages : 310
Book Description
Solid State Physics
Author: J. S. Blakemore
Publisher: Cambridge University Press
ISBN: 9780521313919
Category : Science
Languages : en
Pages : 520
Book Description
Updated to reflect recent work in the field, this book emphasizes crystalline solids, going from the crystal lattice to the ideas of reciprocal space and Brillouin zones, and develops these ideas for lattice vibrations, for the theory of metals, and for semiconductors. The theme of lattice periodicity and its varied consequences runs through eighty percent of the book. Other sections deal with major aspects of solid state physics controlled by other phenomena: superconductivity, dielectric and magnetic properties, and magnetic resonance.
Publisher: Cambridge University Press
ISBN: 9780521313919
Category : Science
Languages : en
Pages : 520
Book Description
Updated to reflect recent work in the field, this book emphasizes crystalline solids, going from the crystal lattice to the ideas of reciprocal space and Brillouin zones, and develops these ideas for lattice vibrations, for the theory of metals, and for semiconductors. The theme of lattice periodicity and its varied consequences runs through eighty percent of the book. Other sections deal with major aspects of solid state physics controlled by other phenomena: superconductivity, dielectric and magnetic properties, and magnetic resonance.
Plasma Physics of the Local Cosmos
Author: National Research Council
Publisher: National Academies Press
ISBN: 9780309092159
Category : Science
Languages : en
Pages : 100
Book Description
Solar and space physics is the study of solar system phenomena that occur in the plasma state. Examples include sunspots, the solar wind, planetary magnetospheres, radiation belts, and the aurora. While each is a distinct phenomenon, there are commonalities among them. To help define and systematize these universal aspects of the field of space physics, the National Research Council was asked by NASA's Office of Space Science to provide a scientific assessment and strategy for the study of magnetized plasmas in the solar system. This report presents that assessment. It covers a number of important research goals for solar and space physics. The report is complementary to the NRC report, The Sun to the Earthâ€"and Beyond: A Decadal Research Strategy for Solar and Space Physics, which presents priorities and strategies for future program activities.
Publisher: National Academies Press
ISBN: 9780309092159
Category : Science
Languages : en
Pages : 100
Book Description
Solar and space physics is the study of solar system phenomena that occur in the plasma state. Examples include sunspots, the solar wind, planetary magnetospheres, radiation belts, and the aurora. While each is a distinct phenomenon, there are commonalities among them. To help define and systematize these universal aspects of the field of space physics, the National Research Council was asked by NASA's Office of Space Science to provide a scientific assessment and strategy for the study of magnetized plasmas in the solar system. This report presents that assessment. It covers a number of important research goals for solar and space physics. The report is complementary to the NRC report, The Sun to the Earthâ€"and Beyond: A Decadal Research Strategy for Solar and Space Physics, which presents priorities and strategies for future program activities.
The Alfvén Wave
Author: Akira Hasegawa
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 152
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 152
Book Description
Surface Electron Cyclotron Waves in Plasmas
Author: Volodymyr Girka
Publisher: Springer
ISBN: 3030171159
Category : Science
Languages : en
Pages : 206
Book Description
This book is the first of its kind devoted to surface waves propagating across an external static magnetic field at harmonics of the electron cyclotron frequency. Based on comprehensive theoretical studies carried out over the course of about forty years, it presents unique material on various characteristics of these transverse waves, namely, dispersion properties and their dependence on numerous design peculiarities of plasma waveguides; damping due to interaction with the plasma surface (the kinetic channel) and collisions between plasma particles (the Ohmic channel); interaction with flows of charged particles moving above the plasma surface; parametric excitation due to the effect of an external radiofrequency field; and their power transfer for sustaining gas discharges. Clarifying numerous complicated mathematical issues it is a valuable resource for postgraduate students and experts in plasma physics, electromagnetic waves, and the kinetic theory of plasmas.
Publisher: Springer
ISBN: 3030171159
Category : Science
Languages : en
Pages : 206
Book Description
This book is the first of its kind devoted to surface waves propagating across an external static magnetic field at harmonics of the electron cyclotron frequency. Based on comprehensive theoretical studies carried out over the course of about forty years, it presents unique material on various characteristics of these transverse waves, namely, dispersion properties and their dependence on numerous design peculiarities of plasma waveguides; damping due to interaction with the plasma surface (the kinetic channel) and collisions between plasma particles (the Ohmic channel); interaction with flows of charged particles moving above the plasma surface; parametric excitation due to the effect of an external radiofrequency field; and their power transfer for sustaining gas discharges. Clarifying numerous complicated mathematical issues it is a valuable resource for postgraduate students and experts in plasma physics, electromagnetic waves, and the kinetic theory of plasmas.
Solid-State Physics
Author: James Deane Patterson
Publisher: Springer Science & Business Media
ISBN: 3540241159
Category : Science
Languages : en
Pages : 727
Book Description
Learning solid state physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of solid state physics is that it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, solid state physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that solid state physics emphasizes how physics properties link to electronic structure. We have retained the term solid state physics, even though condensed matter physics is more commonly used. Condensed matter physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern solid state physics came of age in the late thirties and forties, and had its most extensive expansion with the development of the transistor, integrated circuits, and microelectronics. Most of microelectronics, however, is limited to the properties of inhomogeneously doped semiconductors. Solid state physics includes many other areas of course; among the largest of these are ferromagnetic materials, and superconductors. Just a little less than half of all working physicists are in condensed matter. A course in solid state physics typically begins with three broad areas: (1) How and why atoms bind together to form solids, (2) Lattice vibrations and phonons, and (3) Electrons in solids. One would then typically apply the above to (4) Interactions especially of electrons with phonons, (5) Metals, the Fermi surface and alloys, (6) Semiconductors, (7) Magnetism, (8) Superconductivity, (9) Dielectrics and ferroelectrics, (10) Optical properties, (11) Defects, and (12) Certain other modern topics such as layered materials, quantum Hall effect, mesoscopics, nanophysics, and soft condensed matter. In this book, we will consider all of these.
Publisher: Springer Science & Business Media
ISBN: 3540241159
Category : Science
Languages : en
Pages : 727
Book Description
Learning solid state physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of solid state physics is that it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, solid state physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that solid state physics emphasizes how physics properties link to electronic structure. We have retained the term solid state physics, even though condensed matter physics is more commonly used. Condensed matter physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern solid state physics came of age in the late thirties and forties, and had its most extensive expansion with the development of the transistor, integrated circuits, and microelectronics. Most of microelectronics, however, is limited to the properties of inhomogeneously doped semiconductors. Solid state physics includes many other areas of course; among the largest of these are ferromagnetic materials, and superconductors. Just a little less than half of all working physicists are in condensed matter. A course in solid state physics typically begins with three broad areas: (1) How and why atoms bind together to form solids, (2) Lattice vibrations and phonons, and (3) Electrons in solids. One would then typically apply the above to (4) Interactions especially of electrons with phonons, (5) Metals, the Fermi surface and alloys, (6) Semiconductors, (7) Magnetism, (8) Superconductivity, (9) Dielectrics and ferroelectrics, (10) Optical properties, (11) Defects, and (12) Certain other modern topics such as layered materials, quantum Hall effect, mesoscopics, nanophysics, and soft condensed matter. In this book, we will consider all of these.
Frontiers in High Energy Density Physics
Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177
Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177
Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.
Quantum Plasmas
Author: Fernando Haas
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Laser-Plasma Interactions
Author: Dino A. Jaroszynski
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454
Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454
Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
Plasma Science
Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291
Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291
Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.