Wavelets from a Statistical Perspective PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Wavelets from a Statistical Perspective PDF full book. Access full book title Wavelets from a Statistical Perspective by Maarten Jansen. Download full books in PDF and EPUB format.

Wavelets from a Statistical Perspective

Wavelets from a Statistical Perspective PDF Author: Maarten Jansen
Publisher: CRC Press
ISBN: 1000564142
Category : Business & Economics
Languages : en
Pages : 346

Book Description
Wavelets from a Statistical Perspective offers a modern, 2nd generation look on wavelets, far beyond the rigid setting of the equispaced, dyadic wavelets in the early days. With the methods of this book, based on the lifting scheme, researchers can set up a wavelet or another multiresolution analysis adapted to their data, ranging from images to scattered data or other irregularly spaced observations. Whereas classical wavelets stand a bit apart from other nonparametric methods, this book adds a multiscale touch to your spline, kernel or local polynomial smoothing procedure, thereby extending its applicability to nonlinear, nonparametric processing for piecewise smooth data. One of the chapters of the book constructs B-spline wavelets on nonequispaced knots and multiscale local polynomial transforms. In another chapter, the link between wavelets and Fourier analysis, ubiquitous in the classical approach, is explained, but without being inevitable. In further chapters the discrete wavelet transform is contrasted with the continuous version, the nondecimated (or maximal overlap) transform taking an intermediate position. An important principle in designing a wavelet analysis through the lifting scheme is finding the right balance between bias and variance. Bias and variance also play a crucial role in the nonparametric smoothing in a wavelet framework, in finding well working thresholds or other smoothing parameters. The numerous illustrations can be reproduced with the online available, accompanying software. The software and the exercises can also be used as a starting point in the further exploration of the material.

Wavelets from a Statistical Perspective

Wavelets from a Statistical Perspective PDF Author: Maarten Jansen
Publisher: CRC Press
ISBN: 1000564142
Category : Business & Economics
Languages : en
Pages : 346

Book Description
Wavelets from a Statistical Perspective offers a modern, 2nd generation look on wavelets, far beyond the rigid setting of the equispaced, dyadic wavelets in the early days. With the methods of this book, based on the lifting scheme, researchers can set up a wavelet or another multiresolution analysis adapted to their data, ranging from images to scattered data or other irregularly spaced observations. Whereas classical wavelets stand a bit apart from other nonparametric methods, this book adds a multiscale touch to your spline, kernel or local polynomial smoothing procedure, thereby extending its applicability to nonlinear, nonparametric processing for piecewise smooth data. One of the chapters of the book constructs B-spline wavelets on nonequispaced knots and multiscale local polynomial transforms. In another chapter, the link between wavelets and Fourier analysis, ubiquitous in the classical approach, is explained, but without being inevitable. In further chapters the discrete wavelet transform is contrasted with the continuous version, the nondecimated (or maximal overlap) transform taking an intermediate position. An important principle in designing a wavelet analysis through the lifting scheme is finding the right balance between bias and variance. Bias and variance also play a crucial role in the nonparametric smoothing in a wavelet framework, in finding well working thresholds or other smoothing parameters. The numerous illustrations can be reproduced with the online available, accompanying software. The software and the exercises can also be used as a starting point in the further exploration of the material.

Wavelet Methods for Time Series Analysis

Wavelet Methods for Time Series Analysis PDF Author: Donald B. Percival
Publisher: Cambridge University Press
ISBN: 1107717396
Category : Mathematics
Languages : en
Pages : 628

Book Description
This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.

Antieigenvalue Analysis

Antieigenvalue Analysis PDF Author: Karl Gustafson
Publisher: World Scientific
ISBN: 9814366285
Category : Mathematics
Languages : en
Pages : 259

Book Description
Karl Gustafson is the creater of the theory of antieigenvalue analysis. Its applications spread through fields as diverse as numerical analysis, wavelets, statistics, quantum mechanics, and finance. Antieigenvalue analysis, with its operator trigonometry, is a unifying language which enables new and deeper geometrical understanding of essentially every result in operator theory and matrix theory, together with their applications. This book will open up its methods to a wide range of specialists.

Wavelet Methods in Statistics with R

Wavelet Methods in Statistics with R PDF Author: G. P. Nason
Publisher: Springer Science & Business Media
ISBN: 9780387759609
Category : Business & Economics
Languages : en
Pages : 276

Book Description
This book contains information on how to tackle many important problems using a multiscale statistical approach. It focuses on how to use multiscale methods and discusses methodological and applied considerations.

Statistical Modeling by Wavelets

Statistical Modeling by Wavelets PDF Author: Brani Vidakovic
Publisher: John Wiley & Sons
ISBN: 0470317868
Category : Mathematics
Languages : en
Pages : 410

Book Description
A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.

Wavelets and Statistics

Wavelets and Statistics PDF Author: Anestis Antoniadis
Publisher: Springer Science & Business Media
ISBN: 1461225442
Category : Mathematics
Languages : en
Pages : 407

Book Description
Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countries. Following tradition, both theoretical statistical results and practical contributions of this active field of statistical research were presented. The editors and the local organizers hope that this volume reflects the broad spectrum of the conference. as it includes 21 articles contributed by specialists in various areas in this field. The material compiled is fairly wide in scope and ranges from the development of new tools for non parametric curve estimation to applied problems, such as detection of transients in signal processing and image segmentation. The articles are arranged in alphabetical order by author rather than subject matter. However, to help the reader, a subjective classification of the articles is provided at the end of the book. Several articles of this volume are directly or indirectly concerned with several as pects of wavelet-based function estimation and signal denoising.

Frontiers in Statistical Quality Control 13

Frontiers in Statistical Quality Control 13 PDF Author: Sven Knoth
Publisher: Springer Nature
ISBN: 3030678563
Category : Mathematics
Languages : en
Pages : 410

Book Description
This contributed book focuses on major aspects of statistical quality control, shares insights into important new developments in the field, and adapts established statistical quality control methods for use in e.g. big data, network analysis and medical applications. The content is divided into two parts, the first of which mainly addresses statistical process control, also known as statistical process monitoring. In turn, the second part explores selected topics in statistical quality control, including measurement uncertainty analysis and data quality. The peer-reviewed contributions gathered here were originally presented at the 13th International Workshop on Intelligent Statistical Quality Control, ISQC 2019, held in Hong Kong on August 12-14, 2019. Taken together, they bridge the gap between theory and practice, making the book of interest to both practitioners and researchers in the field of statistical quality control.

Statistical Theory and Method Abstracts

Statistical Theory and Method Abstracts PDF Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 882

Book Description


Intelligent Science and Intelligent Data Engineering

Intelligent Science and Intelligent Data Engineering PDF Author: Yanning Zhang
Publisher: Springer
ISBN: 364231919X
Category : Computers
Languages : en
Pages : 787

Book Description
This book constitutes the proceedings of the Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, IScIDE 2011, held in Xi'an, China, in October 2011. The 97 papers presented were carefully peer-reviewed and selected from 389 submissions. The IScIDE papers in this volume are organized in topical sections on machine learning and computational intelligence; pattern recognition; computer vision and image processing; graphics and computer visualization; knowledge discovering, data mining, web mining; multimedia processing and application.

A Wavelet Tour of Signal Processing

A Wavelet Tour of Signal Processing PDF Author: Stephane Mallat
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663

Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics