Author: Quanguo Zhang
Publisher: Academic Press
ISBN: 0128216549
Category : Science
Languages : en
Pages : 300
Book Description
Waste to Renewable Biohydrogen: Volume 1: Advances in Theory and Experiments provides a comprehensive overview of the advances, processes and technologies for waste treatment to hydrogen production. It introduces and compares the most widely adopted and most promising technologies, such as dark fermentation, thermochemical and photosynthetic processes. In this part, potential estimation, feasibility analysis, feedstock pretreatment, advanced waste-to-biohydrogen processes and each individual systems element are examined. The book delves into the theoretical and experimental studies for the design and optimization of different waste-to-biohydrogen processes and systems. Covering several advanced waste-to-biohydrogen pretreatment and production processes, this book investigates the future trends and the promising pathways for biohydrogen production from waste. - Discusses the potential, feasibility, progress, challenges and prospect of waste-to-biohydrogen technologies - Explores the most promising waste-to-biohydrogen technologies including dark fermentation, thermochemical and photosynthetic processes - Investigate the mechanisms and the effects of the influential factors on different waste-to-biohydrogen processes
Waste to Renewable Biohydrogen
Author: Quanguo Zhang
Publisher: Academic Press
ISBN: 0128216549
Category : Science
Languages : en
Pages : 300
Book Description
Waste to Renewable Biohydrogen: Volume 1: Advances in Theory and Experiments provides a comprehensive overview of the advances, processes and technologies for waste treatment to hydrogen production. It introduces and compares the most widely adopted and most promising technologies, such as dark fermentation, thermochemical and photosynthetic processes. In this part, potential estimation, feasibility analysis, feedstock pretreatment, advanced waste-to-biohydrogen processes and each individual systems element are examined. The book delves into the theoretical and experimental studies for the design and optimization of different waste-to-biohydrogen processes and systems. Covering several advanced waste-to-biohydrogen pretreatment and production processes, this book investigates the future trends and the promising pathways for biohydrogen production from waste. - Discusses the potential, feasibility, progress, challenges and prospect of waste-to-biohydrogen technologies - Explores the most promising waste-to-biohydrogen technologies including dark fermentation, thermochemical and photosynthetic processes - Investigate the mechanisms and the effects of the influential factors on different waste-to-biohydrogen processes
Publisher: Academic Press
ISBN: 0128216549
Category : Science
Languages : en
Pages : 300
Book Description
Waste to Renewable Biohydrogen: Volume 1: Advances in Theory and Experiments provides a comprehensive overview of the advances, processes and technologies for waste treatment to hydrogen production. It introduces and compares the most widely adopted and most promising technologies, such as dark fermentation, thermochemical and photosynthetic processes. In this part, potential estimation, feasibility analysis, feedstock pretreatment, advanced waste-to-biohydrogen processes and each individual systems element are examined. The book delves into the theoretical and experimental studies for the design and optimization of different waste-to-biohydrogen processes and systems. Covering several advanced waste-to-biohydrogen pretreatment and production processes, this book investigates the future trends and the promising pathways for biohydrogen production from waste. - Discusses the potential, feasibility, progress, challenges and prospect of waste-to-biohydrogen technologies - Explores the most promising waste-to-biohydrogen technologies including dark fermentation, thermochemical and photosynthetic processes - Investigate the mechanisms and the effects of the influential factors on different waste-to-biohydrogen processes
Biohydrogen Production from Organic Wastes
Author: Jianlong Wang
Publisher: Springer
ISBN: 9811046751
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Publisher: Springer
ISBN: 9811046751
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Waste to Renewable Biohydrogen, Volume 2
Author: Quanguo Zhang
Publisher: Academic Press
ISBN: 012821922X
Category : Science
Languages : en
Pages : 272
Book Description
Waste to Renewable Biohydrogen, Volume Two: Numerical Modelling and Sustainability Assessment provides an integrated approach on the experimental, modeling and sustainability aspects of waste-to-biohydrogen systems. The book focuses on processes for waste treatment to hydrogen production, delving into modeling and simulation methodologies for the design and optimization of different processes and systems. In addition, it looks at the application of computational fluid dynamics and artificial neural networks. Finally, it addresses the economic, environmental and sustainability implications of waste-to-biohydrogen systems, covering several techniques for cost-benefit analysis, techno-economic analysis, lifecycle assessment, sustainability ranking and supply chain design. This well-rounded reference supports decision-making for energy researchers and industry practitioners alike, but it is also ideal for graduate students, early career researchers and waste management professionals. - Includes numerical simulation models for environmental performances and sustainable supply chains - Explores modeling methodologies for the optimization and upscaling of sustainable technologies and systems - Offers global case studies and comparisons of different feedstocks
Publisher: Academic Press
ISBN: 012821922X
Category : Science
Languages : en
Pages : 272
Book Description
Waste to Renewable Biohydrogen, Volume Two: Numerical Modelling and Sustainability Assessment provides an integrated approach on the experimental, modeling and sustainability aspects of waste-to-biohydrogen systems. The book focuses on processes for waste treatment to hydrogen production, delving into modeling and simulation methodologies for the design and optimization of different processes and systems. In addition, it looks at the application of computational fluid dynamics and artificial neural networks. Finally, it addresses the economic, environmental and sustainability implications of waste-to-biohydrogen systems, covering several techniques for cost-benefit analysis, techno-economic analysis, lifecycle assessment, sustainability ranking and supply chain design. This well-rounded reference supports decision-making for energy researchers and industry practitioners alike, but it is also ideal for graduate students, early career researchers and waste management professionals. - Includes numerical simulation models for environmental performances and sustainable supply chains - Explores modeling methodologies for the optimization and upscaling of sustainable technologies and systems - Offers global case studies and comparisons of different feedstocks
Biotechnology for Zero Waste
Author: Chaudhery Mustansar Hussain
Publisher: John Wiley & Sons
ISBN: 3527348980
Category : Science
Languages : en
Pages : 628
Book Description
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
Publisher: John Wiley & Sons
ISBN: 3527348980
Category : Science
Languages : en
Pages : 628
Book Description
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
Bioenergy Research
Author: Neha Srivastava
Publisher: John Wiley & Sons
ISBN: 1119772117
Category : Science
Languages : en
Pages : 336
Book Description
BIOENERGY RESEARCH Evaluates challenges and sustainable solutions associated with various biofuel technologies Bioenergy Research offers an authoritative guide to recent developments in green bioenergy technologies that are currently available including: bioethanol, biobutanol, biomethanol, bio-oil, biohydrogen, biogas and biomethane. The authors provide in-depth analysis and discuss the commercial viability of the various technological advances in bioenergy. Comprehensive in scope, the book explores the environmental, practical and economic implications associated with a variety of bioenergy options. The book also considers the rollback of fossil fuels, the cost and their replacement as well as practical solutions for these issues. This important resource: Presents up-to-date research and industrial developments for various bioenergy options Offers comparative evaluation of bioenergy technologies for commercial feasibility Reviews current challenges and sustainable solutions for a variety of biofuel technologies Contains a review of existing strategies for bioenergy production Bioenergy Research is a valuable guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, environmental science and technology, microbial technology, bioprocess engineering, and waste valorization.
Publisher: John Wiley & Sons
ISBN: 1119772117
Category : Science
Languages : en
Pages : 336
Book Description
BIOENERGY RESEARCH Evaluates challenges and sustainable solutions associated with various biofuel technologies Bioenergy Research offers an authoritative guide to recent developments in green bioenergy technologies that are currently available including: bioethanol, biobutanol, biomethanol, bio-oil, biohydrogen, biogas and biomethane. The authors provide in-depth analysis and discuss the commercial viability of the various technological advances in bioenergy. Comprehensive in scope, the book explores the environmental, practical and economic implications associated with a variety of bioenergy options. The book also considers the rollback of fossil fuels, the cost and their replacement as well as practical solutions for these issues. This important resource: Presents up-to-date research and industrial developments for various bioenergy options Offers comparative evaluation of bioenergy technologies for commercial feasibility Reviews current challenges and sustainable solutions for a variety of biofuel technologies Contains a review of existing strategies for bioenergy production Bioenergy Research is a valuable guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, environmental science and technology, microbial technology, bioprocess engineering, and waste valorization.
Renewable Hydrogen Production
Author: Ibrahim Dincer
Publisher: Elsevier
ISBN: 0323851894
Category : Science
Languages : en
Pages : 384
Book Description
Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. - Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy - Presents information from simulations and experimental analyses - Offers insights into the future of renewable hydrogen production
Publisher: Elsevier
ISBN: 0323851894
Category : Science
Languages : en
Pages : 384
Book Description
Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. - Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy - Presents information from simulations and experimental analyses - Offers insights into the future of renewable hydrogen production
Production of Hydrogen from Renewable Resources
Author: Zhen Fang
Publisher: Springer
ISBN: 9401773300
Category : Science
Languages : en
Pages : 375
Book Description
This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Publisher: Springer
ISBN: 9401773300
Category : Science
Languages : en
Pages : 375
Book Description
This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Biohydrogen
Author: Kuan-Yeow Show
Publisher: Elsevier Inc. Chapters
ISBN: 0128083638
Category : Science
Languages : en
Pages : 39
Book Description
In combating global warming and other environmental issues over the use of fossil fuels, extensive research has been focusing on developing hydrogen production from biological processes. Biohydrogen is considered a promising future biofuel because of its intrinsic clean and high-energy content properties and the way it is produced. In addition to being produced through environmentally friendly biological means, its conversion to energy yields only pure water, which is an ideal energy carrier in reducing greenhouse gas emissions from fossil fuel combustion. Unlike other well-developed biofuels such as bioethanol and biodiesel, biohydrogen production is still in the early stage of development. A variety of technologies are being developed for biohydrogen production. This chapter presents a review of the state-of-the-art and perspectives of bioprocess design for biohydrogen production research in the context of pathways, microorganisms, metabolic flux analysis, process design, and reactor system. Challenges and prospects of biohydrogen production are also outlined.
Publisher: Elsevier Inc. Chapters
ISBN: 0128083638
Category : Science
Languages : en
Pages : 39
Book Description
In combating global warming and other environmental issues over the use of fossil fuels, extensive research has been focusing on developing hydrogen production from biological processes. Biohydrogen is considered a promising future biofuel because of its intrinsic clean and high-energy content properties and the way it is produced. In addition to being produced through environmentally friendly biological means, its conversion to energy yields only pure water, which is an ideal energy carrier in reducing greenhouse gas emissions from fossil fuel combustion. Unlike other well-developed biofuels such as bioethanol and biodiesel, biohydrogen production is still in the early stage of development. A variety of technologies are being developed for biohydrogen production. This chapter presents a review of the state-of-the-art and perspectives of bioprocess design for biohydrogen production research in the context of pathways, microorganisms, metabolic flux analysis, process design, and reactor system. Challenges and prospects of biohydrogen production are also outlined.
Industrial Biorefineries and White Biotechnology
Author: Ashok Pandey
Publisher: Elsevier
ISBN: 0444634649
Category : Science
Languages : en
Pages : 731
Book Description
Industrial Biorefineries and White Biotechnology provides a comprehensive look at the increasing focus on developing the processes and technologies needed for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular, the development of low-cost technologies. During the last 3-4 years, there have been scientific and technological developments in the area; this book represents the most updated information and technological perspective on the topic. - Provides information on the most advanced and innovative pretreatment processes and technologies for biomass - Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery - Provides information on integration of processes for the pretreatment of biomass - Designed as a textbook for both graduate students and researchers
Publisher: Elsevier
ISBN: 0444634649
Category : Science
Languages : en
Pages : 731
Book Description
Industrial Biorefineries and White Biotechnology provides a comprehensive look at the increasing focus on developing the processes and technologies needed for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular, the development of low-cost technologies. During the last 3-4 years, there have been scientific and technological developments in the area; this book represents the most updated information and technological perspective on the topic. - Provides information on the most advanced and innovative pretreatment processes and technologies for biomass - Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery - Provides information on integration of processes for the pretreatment of biomass - Designed as a textbook for both graduate students and researchers
Bio-valorization of Waste
Author: Shachi Shah
Publisher: Springer Nature
ISBN: 9811596964
Category : Science
Languages : en
Pages : 347
Book Description
This book explores the concept and methods of waste management with a new approach of biological valorization. Waste valorization is a process that aims to reduce, reuse, and recycle the waste into usable, value-added, and environmental benign raw materials which can be a source of energy. The book brings together comprehensive information to assert that waste can be converted into a resource or a raw material for value addition. Waste valorization imbibes the natural recycling principles of zero waste, loop closing, and underlines the importance of sustainable and environmentally friendly alternatives. Drawing upon research and examples from around the world, the book is offering an up-to-date account, and insight into the contours of waste valorization principles, biovalorization technologies for diverse group of wastes including agricultural, municipal, and industrial waste. It further discusses the emerging paradigms of waste valorization, waste biorefineries, valorization technologies for energy, biofuel, and biochemical production. The book meets the growing global needs for a comprehensive and holistic outlook on waste management. It is of interest to teachers, researchers, scientists, capacity builders and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.
Publisher: Springer Nature
ISBN: 9811596964
Category : Science
Languages : en
Pages : 347
Book Description
This book explores the concept and methods of waste management with a new approach of biological valorization. Waste valorization is a process that aims to reduce, reuse, and recycle the waste into usable, value-added, and environmental benign raw materials which can be a source of energy. The book brings together comprehensive information to assert that waste can be converted into a resource or a raw material for value addition. Waste valorization imbibes the natural recycling principles of zero waste, loop closing, and underlines the importance of sustainable and environmentally friendly alternatives. Drawing upon research and examples from around the world, the book is offering an up-to-date account, and insight into the contours of waste valorization principles, biovalorization technologies for diverse group of wastes including agricultural, municipal, and industrial waste. It further discusses the emerging paradigms of waste valorization, waste biorefineries, valorization technologies for energy, biofuel, and biochemical production. The book meets the growing global needs for a comprehensive and holistic outlook on waste management. It is of interest to teachers, researchers, scientists, capacity builders and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.