Volcanoes and Impact Craters on the Moon and Mars PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Volcanoes and Impact Craters on the Moon and Mars PDF full book. Access full book title Volcanoes and Impact Craters on the Moon and Mars by Piero Leonardi. Download full books in PDF and EPUB format.

Volcanoes and Impact Craters on the Moon and Mars

Volcanoes and Impact Craters on the Moon and Mars PDF Author: Piero Leonardi
Publisher:
ISBN:
Category : Lunar geology
Languages : en
Pages :

Book Description


Volcanoes and Impact Craters on the Moon and Mars

Volcanoes and Impact Craters on the Moon and Mars PDF Author: Piero Leonardi
Publisher:
ISBN:
Category : Lunar geology
Languages : en
Pages :

Book Description


Volcanoes and Impact Craters on the Moon and Mars

Volcanoes and Impact Craters on the Moon and Mars PDF Author: Piero Leonardi
Publisher: Elsevier Science & Technology
ISBN:
Category : Nature
Languages : en
Pages : 476

Book Description


Mars: A Volcanic World

Mars: A Volcanic World PDF Author: Giovanni Leone
Publisher: Springer Nature
ISBN: 3030841030
Category : Science
Languages : en
Pages : 328

Book Description
This book is a comprehensive advancement about the understanding of the volcanology of Mars in all its aspects, from its primary formation to its evolution in time, from the smaller structures to the bigger structures. It discusses the implications of volcanism in the general environmental and geological context of Mars. The book is validating the Southern Giant Impact Hypothesis explaining the formation of Mars in an interdisciplinary approach, including mineralogical, geochemical, volcanological as well as geomorphological information. Implications for future explorations in terms of resources are provided. This book serves as a textbook for undergraduate and graduate level to foster new basic research in the field of planetary volcanology and is a new guide for future missions toward a volcanic world, including new detailed information for the general audience who is always keen to know more about the history of Mars and its large volcanoes. The book also presents an updated situation about the water resources of the planet.

Volcanoes of the Solar System

Volcanoes of the Solar System PDF Author: Charles Frankel
Publisher: Cambridge University Press
ISBN: 9780521477703
Category : Science
Languages : en
Pages : 254

Book Description
Comprehensive and beautifully illustrated tour of recently discovered volcanic features of the Solar System.

The Formation and Degradation of Planetary Surfaces

The Formation and Degradation of Planetary Surfaces PDF Author: Heather Meyer
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 157

Book Description
Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter. On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.

Worlds on Fire

Worlds on Fire PDF Author: Charles Frankel
Publisher: Cambridge University Press
ISBN: 9780521803939
Category : Nature
Languages : en
Pages : 396

Book Description
Publisher Description

The Volcanoes of Mars

The Volcanoes of Mars PDF Author: James R. Zimbelman
Publisher: Elsevier
ISBN: 0128228776
Category : Science
Languages : en
Pages : 260

Book Description
The Volcanoes of Mars offers a clear, cohesive summary of Mars volcanology. It begins with an introduction to the geology and geography of the red planet and an overview of its volcanic history, and continues to discuss each distinct volcanic province, identifying the common and unique aspects of each region. Incorporating basic volcanological information and constraints on the regional geologic history derived from geologic mapping, the book also examines current constraints on the composition of the volcanic rocks as investigated by both orbiting spacecraft and rovers. In addition, it compares the features of Martian volcanoes to those seen on other volcanic bodies. Concluding with prospects for new knowledge to be gained from future Mars missions, this book brings researchers in volcanology and the study of Mars up to date on the latest findings in the study of volcanoes on Mars, allowing the reader to compare and contrast Martian volcanoes to volcanoes studied on Earth and throughout the Solar System. Presents clearly organized text and figures that will quickly allow the reader to find specific aspects of Martian volcanism Includes definitions of geological and volcanological terms throughout to aid interdisciplinary understanding Summarizes key results for each volcanic region of Mars and provides copious citations to the research literature to facilitate further discovery Synthesizes the most current data from multiple spacecraft missions, including the Mars Reconnaissance Orbiter, as well as geochemical data from Martian meteorites Utilizes published geologic mapping results to highlight the detailed knowledge that exists for each region

Volcanic Activity on Mars

Volcanic Activity on Mars PDF Author: Gennadiĭ Nikolaevich Katterfelʹd
Publisher:
ISBN:
Category : Mars (Planet).
Languages : en
Pages : 28

Book Description


Volcanic Worlds

Volcanic Worlds PDF Author: Rosaly M.C. Lopes
Publisher: Springer Science & Business Media
ISBN: 9783540004318
Category : Science
Languages : en
Pages : 284

Book Description
Written by active research scientists who study the volcanism of Earth and of other planets, the contributions provide the first general review of volcanic activity throughout the Solar System. Successive chapters describe past and present volcanic activity as it is observed throughout the Solar System. These chapters relate to readers not only our present knowledge of volcanism throughout the Solar System but also how frontline scientists working in this field conduct their research.

Encyclopedia of Planetary Landforms

Encyclopedia of Planetary Landforms PDF Author: Henrik Hargitai
Publisher: Springer
ISBN: 9781461492139
Category : Science
Languages : en
Pages : 1100

Book Description
The technique of the mapping of planetary surfaces and the methods used for the identification of various planetary landforms improved much in the last 400 years. Until the 20th century, telescopic observers could interpret planetary landforms solely based on their appearance, while today various data sets acquired by space probes can be used for a more detailed analysis on the composition and origin of the surface features. Before the Greeks, the Earth and the Heavens were indisputably of different origin and nature. It was a major philosophical breakthrough - first appeared as an a priori theory, later based on observations - that the Heavens (planetary bodies) and the Earth share common features: gravity, composition and solar distance may be different, but the nature of the physical processes shaping the landforms are essentially the same. It has been a long way since we have arrived from the first telescopic description of lunar craters to the identification of various geological formations on Mars or on minor planets. Relief features of the Moon have first been observed by Galileo Galilee, via his telescope. During the next centuries, a multitude of Lunar landforms have been identified. Theories based on observations have been connected together by a scientific paradigm which explained their origin in a logical and seemingly undisputable manner. Telescopes showed a Lunar surface full of circular landforms, called craters, a landscape with no parallel on Earth. But the individual landforms had a morphological equivalent, volcanoes, which naturally led to the conclusion that craters had been created by volcanic processes. Maria ("seas") served as natural basins for water bodies. Observations clearly showed that water and air are hardly found on the Moon, the lack of clouds indicated the lack of precipitation. But the flat surface of the maria (obviously composed of marine sediments) and the meandering valleys suggested the presence of liquid water and a higher atmospheric pressure in the past - during the age of active volcanism and degassing. There were no observable active volcanic processes but some craters (though to be volcanoes) have been observed as being active: flashes of light - interpreted as eruptions - have been reported by several observers. The presence of pyroclasts thrown out from the volcanic vents of craters provided an independent evidence: meteor showers and individual meteorites falling from the sky - originating from Lunar craters. The logical and interconnected set of explanations based on observations proved to be completely false by the second half of the 20th century. The new paradigm interpreted the very same features in a new context. The case of Mars was different. There were no telescopes capable of observing relief forms (no shadows on Mars are visible from the Earth, because Mars always shows a nearly full Mars phase), so only albedo features could be seen and used for interpretation. The lack of visible relief features were interpreted as a lack of considerable topography: an unnoticed distortion in the observational data. The hue and contrast of dark and bright, orange, grey and white spots have changed seasonally, the polar areas clearly showed a polar cap made of ice and snow, but clouds have not been observed. Since Mars is farther away from the Sun than the Earth, it was evident that temperature values are lower there. Scientists concluded that Mars is an ancient, arid world. Then contemporary geology taught the theory according to which waters on the Earth are going to infiltrate underground in time, making the surface dry - observations showed that this had already happened on Mars. The last surface reservoirs of water were the polar caps. Some observers reported seeing a global network of linear features, but other have only seen very few of such albedo markings. These features were interpreted as "canals," made by a civilization for irrigation, carrying water from the poles to all around the flat plains of Mars. What was observable from the Earth were the broad stripes of irrigated vegetation (like those along the Nile), the canals themselves were too narrow to be visible from here. All theories converged - supposing that the features seen by some, but not seen by others, were real. There was no chance for verification until spacecrafts have been developed which were able to make local observations. Instead of canals, the first pictures returned revealed a surface full of craters - a landform not expected by anyone. A paradigm shift was needed to explain the features of the "new" Mars. On the Moon, features were observable, but the interpretation was wrong. On Mars, only blurred albedo markings could be observed, along with sharp lines of imagination, which again were interpreted falsely. In the case of Venus, there was no data on surface features. Only its bright cloud top could be observed from the Earth. But this fact along with the planet's orbital parameters provided enough information for a popular view on its surface conditions: a hot world (inferred from its proximity to the Sun) and also a rainy one (from its complete cloud cover). The conclusion: Venus is a global jungle possibly with dinosaurs, like the hot and wet world of the then-discovered Mesozoic era. Our current knowledge originated from these early attempts of interpreting surface conditions and geological origin of landforms from a very little set of available data. Today we have a huge set of images and other physical data which makes it possible to create models on the inner structure and thermal history of planetary bodies. Combined data sets lead to better supported models on the formation of surface features. Today we believe that most models give reliable explanation for the origin of planetary landforms. New, higher resolution images reveal new sets of meso- and microscale landforms, while images from previously not imaged dwarf planets, satellites, asteroids and cometary nuclei show landforms never seen before. In the future exoplanets are expected to provide brand new types of relief features no predictable by our Earth-and Solar System bound imagination. There are so many different landforms on planetary surfaces that it is nearly impossible for anybody to overview all of them who does not work exactly with that certain feature type. The Encyclopedia helps with presenting the landforms in searchable, alphabetical order. The book contains more than a simple list of various features: it provides context and connections between them and point to their origin. For example sand dunes were found on Venus, Mars and Titan, fluvial valleys and shorelines are present on Mars and Titan, impact craters have many different types - all are presented and explained here. Beyond the texts, references, schematic figures, images and planetary maps accompany the description of landforms, providing a wide background for detailed analyses even for geomorphologists working in planetary science. This book is to help the reader to discover the great variety of planetary landforms.