Author: Robert M. Wilson
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 40
Book Description
During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 1-3 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages), as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7°C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere.
Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858): A Connection?
Author: Robert M. Wilson
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 40
Book Description
During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 1-3 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages), as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7°C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere.
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 40
Book Description
During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 1-3 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages), as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7°C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere.
Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858)
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722938147
Category :
Languages : en
Pages : 40
Book Description
During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 13 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages). as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of' each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7 C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818-1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia; 8 deg. S), which previously, has been linked to "the year without a summer" (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may, be linked, respectively, to the large, catacivsmic volcanic eruptions of Galunggung (Indonesia; 7 deg. S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland; 64 deg. N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically b), SchAabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent leve...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722938147
Category :
Languages : en
Pages : 40
Book Description
During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 13 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages). as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of' each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7 C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818-1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia; 8 deg. S), which previously, has been linked to "the year without a summer" (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may, be linked, respectively, to the large, catacivsmic volcanic eruptions of Galunggung (Indonesia; 7 deg. S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland; 64 deg. N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically b), SchAabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent leve...
Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days, 1818-1858
Author: Robert M. Wilson
Publisher: BiblioGov
ISBN: 9781289273095
Category :
Languages : en
Pages : 44
Book Description
The NASA Technical Reports Server (NTRS) houses half a million publications that are a valuable means of information to researchers, teachers, students, and the general public. These documents are all aerospace related with much scientific and technical information created or funded by NASA. Some types of documents include conference papers, research reports, meeting papers, journal articles and more. This is one of those documents.
Publisher: BiblioGov
ISBN: 9781289273095
Category :
Languages : en
Pages : 44
Book Description
The NASA Technical Reports Server (NTRS) houses half a million publications that are a valuable means of information to researchers, teachers, students, and the general public. These documents are all aerospace related with much scientific and technical information created or funded by NASA. Some types of documents include conference papers, research reports, meeting papers, journal articles and more. This is one of those documents.
The Frigid Golden Age
Author: Dagomar Degroot
Publisher: Cambridge University Press
ISBN: 1108419313
Category : History
Languages : en
Pages : 387
Book Description
Explores the resilience of the Dutch Republic in the face of preindustrial climate change during the Little Ice Age.
Publisher: Cambridge University Press
ISBN: 1108419313
Category : History
Languages : en
Pages : 387
Book Description
Explores the resilience of the Dutch Republic in the face of preindustrial climate change during the Little Ice Age.
On the Bimodality of ENSO Cycle Extremes
Author: Robert M. Wilson
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 28
Book Description
On the basis of sea surface temperature in the El Niño 3.4 region (5° N.-5° S., 120°-170° W.) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Niño and 10 La Niña, these 26 events representing the extremes of the quasi-periodic El Niño-Southern Oscillation (ENSO) cycle. Runs testing show that the duration, recurrence period, and sequencing of these extremes vary randomly. Hence, the decade of the 1990's especially for El Niño, is not significantly different from that of previous decadal epochs, at least, on the basis of the frequency of onsets of ENSO extremes. Additionally, the distribution of duration for both El Niño and La Niña looks strikingly bimodal, each consisting of two preferred modes, about 8- and 16-mo long for El Niño and about 9- and 18-mo long for La Niña, as does the distribution of the recurrence period for El Niño, consisting of two preferred modes about 21- and 50-mo long. Scatterplots of the recurrence period versus duration for El Niño are found to be statistically important, displaying preferential associations that link shorter (or longer) duration with shorter (longer) recurrence periods. Because the last onset of El Niño occured in 1997 and the event was of longer than average duration, onset of the next anticipated El Niño is not expected until February 2000 or later.
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 28
Book Description
On the basis of sea surface temperature in the El Niño 3.4 region (5° N.-5° S., 120°-170° W.) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Niño and 10 La Niña, these 26 events representing the extremes of the quasi-periodic El Niño-Southern Oscillation (ENSO) cycle. Runs testing show that the duration, recurrence period, and sequencing of these extremes vary randomly. Hence, the decade of the 1990's especially for El Niño, is not significantly different from that of previous decadal epochs, at least, on the basis of the frequency of onsets of ENSO extremes. Additionally, the distribution of duration for both El Niño and La Niña looks strikingly bimodal, each consisting of two preferred modes, about 8- and 16-mo long for El Niño and about 9- and 18-mo long for La Niña, as does the distribution of the recurrence period for El Niño, consisting of two preferred modes about 21- and 50-mo long. Scatterplots of the recurrence period versus duration for El Niño are found to be statistically important, displaying preferential associations that link shorter (or longer) duration with shorter (longer) recurrence periods. Because the last onset of El Niño occured in 1997 and the event was of longer than average duration, onset of the next anticipated El Niño is not expected until February 2000 or later.
Statistical Aspects of ENSO Events (1950-1997) and the El Nino-Atlantic Intense Hurricane Activity Relationship
Author: Robert M. Wilson
Publisher:
ISBN:
Category : Atlantic Ocean
Languages : en
Pages : 28
Book Description
Publisher:
ISBN:
Category : Atlantic Ocean
Languages : en
Pages : 28
Book Description
FY 1998 Scientific and Technical Reports, Articles, Papers, and Presentations
An Estimation of the Likelihood of Significant Eruptions During 2000-2009 Using Poisson Statistics on Two-Point Moving Averages of the Volcanic Time Series
Space Sciences Laboratory Publications and Presentations: January 1 - December 31,1998
The Sun, the Earth, and Near-earth Space
Author: John A. Eddy
Publisher: Government Printing Office
ISBN: 9780160838088
Category : Business & Economics
Languages : en
Pages : 316
Book Description
" ... Concise explanations and descriptions - easily read and readily understood - of what we know of the chain of events and processes that connect the Sun to the Earth, with special emphasis on space weather and Sun-Climate."--Dear Reader.
Publisher: Government Printing Office
ISBN: 9780160838088
Category : Business & Economics
Languages : en
Pages : 316
Book Description
" ... Concise explanations and descriptions - easily read and readily understood - of what we know of the chain of events and processes that connect the Sun to the Earth, with special emphasis on space weather and Sun-Climate."--Dear Reader.