Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Parameter Estimation in Stochastic Volatility Models
Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Option Pricing and Estimation of Financial Models with R
Author: Stefano M. Iacus
Publisher: John Wiley & Sons
ISBN: 1119990203
Category : Business & Economics
Languages : en
Pages : 402
Book Description
Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.
Publisher: John Wiley & Sons
ISBN: 1119990203
Category : Business & Economics
Languages : en
Pages : 402
Book Description
Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.
Derivatives in Financial Markets with Stochastic Volatility
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Malliavin Calculus in Finance
Author: Elisa Alos
Publisher: CRC Press
ISBN: 1000403513
Category : Mathematics
Languages : en
Pages : 350
Book Description
Malliavin Calculus in Finance: Theory and Practice aims to introduce the study of stochastic volatility (SV) models via Malliavin Calculus. Malliavin calculus has had a profound impact on stochastic analysis. Originally motivated by the study of the existence of smooth densities of certain random variables, it has proved to be a useful tool in many other problems. In particular, it has found applications in quantitative finance, as in the computation of hedging strategies or the efficient estimation of the Greeks. The objective of this book is to offer a bridge between theory and practice. It shows that Malliavin calculus is an easy-to-apply tool that allows us to recover, unify, and generalize several previous results in the literature on stochastic volatility modeling related to the vanilla, the forward, and the VIX implied volatility surfaces. It can be applied to local, stochastic, and also to rough volatilities (driven by a fractional Brownian motion) leading to simple and explicit results. Features Intermediate-advanced level text on quantitative finance, oriented to practitioners with a basic background in stochastic analysis, which could also be useful for researchers and students in quantitative finance Includes examples on concrete models such as the Heston, the SABR and rough volatilities, as well as several numerical experiments and the corresponding Python scripts Covers applications on vanillas, forward start options, and options on the VIX. The book also has a Github repository with the Python library corresponding to the numerical examples in the text. The library has been implemented so that the users can re-use the numerical code for building their examples. The repository can be accessed here: https://bit.ly/2KNex2Y.
Publisher: CRC Press
ISBN: 1000403513
Category : Mathematics
Languages : en
Pages : 350
Book Description
Malliavin Calculus in Finance: Theory and Practice aims to introduce the study of stochastic volatility (SV) models via Malliavin Calculus. Malliavin calculus has had a profound impact on stochastic analysis. Originally motivated by the study of the existence of smooth densities of certain random variables, it has proved to be a useful tool in many other problems. In particular, it has found applications in quantitative finance, as in the computation of hedging strategies or the efficient estimation of the Greeks. The objective of this book is to offer a bridge between theory and practice. It shows that Malliavin calculus is an easy-to-apply tool that allows us to recover, unify, and generalize several previous results in the literature on stochastic volatility modeling related to the vanilla, the forward, and the VIX implied volatility surfaces. It can be applied to local, stochastic, and also to rough volatilities (driven by a fractional Brownian motion) leading to simple and explicit results. Features Intermediate-advanced level text on quantitative finance, oriented to practitioners with a basic background in stochastic analysis, which could also be useful for researchers and students in quantitative finance Includes examples on concrete models such as the Heston, the SABR and rough volatilities, as well as several numerical experiments and the corresponding Python scripts Covers applications on vanillas, forward start options, and options on the VIX. The book also has a Github repository with the Python library corresponding to the numerical examples in the text. The library has been implemented so that the users can re-use the numerical code for building their examples. The repository can be accessed here: https://bit.ly/2KNex2Y.
Stochastic Calculus for Fractional Brownian Motion and Applications
Author: Francesca Biagini
Publisher: Springer Science & Business Media
ISBN: 1846287979
Category : Mathematics
Languages : en
Pages : 331
Book Description
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
Publisher: Springer Science & Business Media
ISBN: 1846287979
Category : Mathematics
Languages : en
Pages : 331
Book Description
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
Stochastic Differential Equations and Processes
Author: Mounir Zili
Publisher: Springer Science & Business Media
ISBN: 3642223680
Category : Mathematics
Languages : en
Pages : 273
Book Description
Selected papers submitted by participants of the international Conference “Stochastic Analysis and Applied Probability 2010” ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the “Applied Mathematics & Mathematical Physics” research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz.
Publisher: Springer Science & Business Media
ISBN: 3642223680
Category : Mathematics
Languages : en
Pages : 273
Book Description
Selected papers submitted by participants of the international Conference “Stochastic Analysis and Applied Probability 2010” ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the “Applied Mathematics & Mathematical Physics” research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz.
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities
Author: Anatoli? Vital?evich Svishchuk
Publisher: World Scientific
ISBN: 9814440132
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities is devoted to the modeling and pricing of various kinds of swaps, such as those for variance, volatility, covariance, correlation, for financial and energy markets with different stochastic volatilities, which include CIR process, regime-switching, delayed, mean-reverting, multi-factor, fractional, Levy-based, semi-Markov and COGARCH(1,1). One of the main methods used in this book is change of time method. The book outlines how the change of time method works for different kinds of models and problems arising in financial and energy markets and the associated problems in modeling and pricing of a variety of swaps. The book also contains a study of a new model, the delayed Heston model, which improves the volatility surface fitting as compared with the classical Heston model. The author calculates variance and volatility swaps for this model and provides hedging techniques. The book considers content on the pricing of variance and volatility swaps and option pricing formula for mean-reverting models in energy markets. Some topics such as forward and futures in energy markets priced by multi-factor Levy models and generalization of Black-76 formula with Markov-modulated volatility are part of the book as well, and it includes many numerical examples such as S&P60 Canada Index, S&P500 Index and AECO Natural Gas Index.
Publisher: World Scientific
ISBN: 9814440132
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities is devoted to the modeling and pricing of various kinds of swaps, such as those for variance, volatility, covariance, correlation, for financial and energy markets with different stochastic volatilities, which include CIR process, regime-switching, delayed, mean-reverting, multi-factor, fractional, Levy-based, semi-Markov and COGARCH(1,1). One of the main methods used in this book is change of time method. The book outlines how the change of time method works for different kinds of models and problems arising in financial and energy markets and the associated problems in modeling and pricing of a variety of swaps. The book also contains a study of a new model, the delayed Heston model, which improves the volatility surface fitting as compared with the classical Heston model. The author calculates variance and volatility swaps for this model and provides hedging techniques. The book considers content on the pricing of variance and volatility swaps and option pricing formula for mean-reverting models in energy markets. Some topics such as forward and futures in energy markets priced by multi-factor Levy models and generalization of Black-76 formula with Markov-modulated volatility are part of the book as well, and it includes many numerical examples such as S&P60 Canada Index, S&P500 Index and AECO Natural Gas Index.
Mathematical Modeling and Methods of Option Pricing
Author: Lishang Jiang
Publisher: World Scientific
ISBN: 9812563695
Category : Science
Languages : en
Pages : 344
Book Description
From the perspective of partial differential equations (PDE), this book introduces the Black-Scholes-Merton's option pricing theory. A unified approach is used to model various types of option pricing as PDE problems, to derive pricing formulas as their solutions, and to design efficient algorithms from the numerical calculation of PDEs.
Publisher: World Scientific
ISBN: 9812563695
Category : Science
Languages : en
Pages : 344
Book Description
From the perspective of partial differential equations (PDE), this book introduces the Black-Scholes-Merton's option pricing theory. A unified approach is used to model various types of option pricing as PDE problems, to derive pricing formulas as their solutions, and to design efficient algorithms from the numerical calculation of PDEs.
High-Frequency Financial Econometrics
Author: Yacine Aït-Sahalia
Publisher: Princeton University Press
ISBN: 0691161437
Category : Business & Economics
Languages : en
Pages : 683
Book Description
A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Publisher: Princeton University Press
ISBN: 0691161437
Category : Business & Economics
Languages : en
Pages : 683
Book Description
A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Theory and Applications of Monte Carlo Simulations
Author: Victor Chan
Publisher:
ISBN: 9789535157243
Category :
Languages : en
Pages : 286
Book Description
The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique. The 11 chapters of this book collectively illustrates how such a sampling technique is exploited to solve difficult problems or analyze complex systems in various engineering and science domains. Issues related to the use of MCS including goodness-of-fit, uncertainty evaluation, variance reduction, optimization, and statistical estimation are discussed and examples of solutions are given. Novel applications of MCS are demonstrated in financial systems modeling, estimation of transition behavior of organic molecules, chemical reaction, particle diffusion, kinetic simulation of biophysics and biological data, and healthcare practices. To enlarge the accessibility of this book, both field-specific background materials and field-specific usages of MCS are introduced in most chapters. The aim of this book is to unify knowledge of MCS from different fields to facilitate research and new applications of MCS.
Publisher:
ISBN: 9789535157243
Category :
Languages : en
Pages : 286
Book Description
The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique. The 11 chapters of this book collectively illustrates how such a sampling technique is exploited to solve difficult problems or analyze complex systems in various engineering and science domains. Issues related to the use of MCS including goodness-of-fit, uncertainty evaluation, variance reduction, optimization, and statistical estimation are discussed and examples of solutions are given. Novel applications of MCS are demonstrated in financial systems modeling, estimation of transition behavior of organic molecules, chemical reaction, particle diffusion, kinetic simulation of biophysics and biological data, and healthcare practices. To enlarge the accessibility of this book, both field-specific background materials and field-specific usages of MCS are introduced in most chapters. The aim of this book is to unify knowledge of MCS from different fields to facilitate research and new applications of MCS.