VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing PDF full book. Access full book title VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing by Dimpesh Patel. Download full books in PDF and EPUB format.

VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing

VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing PDF Author: Dimpesh Patel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing

VLSI Implementation of Digital Signal Processing Algorithms for MIMO Detection and Channel Pre-processing PDF Author: Dimpesh Patel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


VLSI Implementation of Digital Signal Processing Algorithms for MIMO/SISO Systems

VLSI Implementation of Digital Signal Processing Algorithms for MIMO/SISO Systems PDF Author: Mahdi Shabany
Publisher:
ISBN: 9780494713693
Category :
Languages : en
Pages : 400

Book Description
The efficient high-throughput VLSI implementation of near-optimal multiple-input multiple-output (MIMO) detectors for 4x4 MIMO systems in high-order quadrature amplitude modulation (QAM) schemes has been a major challenge in the literature. To address this challenge, this thesis introduces a novel scalable pipelined VLSI architecture for a 4 x 4 64-QAM MIMO receiver based on K-Best lattice decoders. The key contribution is a means of expanding/visiting the intermediate nodes of the search tree on-demand, rather than exhaustively along with three types of distributed sorters operating in a pipelined structure. The combined expansion and sorting cores are able to find the K best candidates in K clock cycles. The proposed architecture has a fixed critical path independent of the constellation order, on-demand expansion scheme, efficient distributed sorters, and is scalable to a higher number of antennas/constellation orders. Fabricated in 0.13mum CMOS, it operates at a significantly higher throughput (5.8x better) than currently reported schemes and occupies 0.95 mm2 core area. Operating at 282 MHz clock frequency, it dissipates 135 mW at 1.3 V supply with no performance loss. It achieves an SNR-independent decoding throughput of 675 Mbps satisfying the requirements of IEEE 802.16m and Long Term Evolution (LTE) systems. The measurements confirm that this design consumes 3.0x less energy/bit compared to the previous best design.

Algorithms and VLSI Implementations of MIMO Detection

Algorithms and VLSI Implementations of MIMO Detection PDF Author: Ibrahim A. Bello
Publisher: Springer Nature
ISBN: 3031045122
Category : Technology & Engineering
Languages : en
Pages : 162

Book Description
This book provides a detailed overview of detection algorithms for multiple-input multiple-output (MIMO) communications systems focusing on their hardware realisation. The book begins by analysing the maximum likelihood detector, which provides the optimal bit error rate performance in an uncoded communications system. However, the maximum likelihood detector experiences a high complexity that scales exponentially with the number of antennas, which makes it impractical for real-time communications systems. The authors proceed to discuss lower-complexity detection algorithms such as zero-forcing, sphere decoding, and the K-best algorithm, with the aid of detailed algorithmic analysis and several MATLAB code examples. Furthermore, different design examples of MIMO detection algorithms and their hardware implementation results are presented and discussed. Finally, an ASIC design flow for implementing MIMO detection algorithms in hardware is provided, including the system simulation and modelling steps and register transfer level modelling using hardware description languages. Provides an overview of MIMO detection algorithms and discusses their corresponding hardware implementations in detail; Highlights architectural considerations of MIMO detectors in achieving low power consumption and high throughput; Discusses design tradeoffs that will guide readers’ efforts when implementing MIMO algorithms in hardware; Describes a broad range of implementations of different MIMO detectors, enabling readers to make informed design decisions based on their application requirements.

VLSI Implementation of Digital Signal Processing Algorithms for MIMO/SISO Systems

VLSI Implementation of Digital Signal Processing Algorithms for MIMO/SISO Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The efficient high-throughput VLSI implementation of near-optimal multiple-input multiple-output (MIMO) detectors for 4x4 MIMO systems in high-order quadrature amplitude modulation (QAM) schemes has been a major challenge in the literature. To address this challenge, this thesis introduces a novel scalable pipelined VLSI architecture for a 4x4 64-QAM MIMO receiver based on K-Best lattice decoders. The key contribution is a means of expanding/visiting the intermediate nodes of the search tree on-demand, rather than exhaustively along with three types of distributed sorters operating in a pipelined structure. The combined expansion and sorting cores are able to find the K best candidates in K clock cycles. The proposed architecture has a fixed critical path independent of the constellation order, on-demand expansion scheme, efficient distributed sorters, and is scalable to a higher number of antennas/constellation orders. Fabricated in 0.13um CMOS, it operates at a significantly higher throughput (5.8x better) than currently reported schemes and occupies 0.95 mm2 core area. Operating at 282 MHz clock frequency, it dissipates 135 mW at 1.3 V supply with no performance loss. It achieves an SNR-independent decoding throughput of 675 Mbps satisfying the requirements of IEEE 802.16m and Long Term Evolution (LTE) systems. The measurements confirm that this design consumes 3.0x less energy/bit compared to the previous best design.

Massive MIMO Detection Algorithm and VLSI Architecture

Massive MIMO Detection Algorithm and VLSI Architecture PDF Author: Leibo Liu
Publisher: Springer
ISBN: 9811363625
Category : Computers
Languages : en
Pages : 348

Book Description
This book introduces readers to a reconfigurable chip architecture for future wireless communication systems, such as 5G and beyond. The proposed architecture perfectly meets the demands for future mobile communication solutions to support different standards, algorithms, and antenna sizes, and to accommodate the evolution of standards and algorithms. It employs massive MIMO detection algorithms, which combine the advantages of low complexity and high parallelism, and can fully meet the requirements for detection accuracy. Further, the architecture is implemented using ASIC, which offers high energy efficiency, high area efficiency and low detection error. After introducing massive MIMO detection algorithms and circuit architectures, the book describes the ASIC implementation for verifying the massive MIMO detection. In turn, it provides detailed information on the proposed reconfigurable architecture: the data path and configuration path for massive MIMO detection algorithms, including the processing unit, interconnections, storage mechanism, configuration information format, and configuration method.

Vlsi Implementation of Mimo Signal Processing Algorithms

Vlsi Implementation of Mimo Signal Processing Algorithms PDF Author: Mahdi Shabany
Publisher: LAP Lambert Academic Publishing
ISBN: 9783848497638
Category :
Languages : en
Pages : 208

Book Description
The efficient high-throughput VLSI implementation of near-optimal multiple-input multiple-output (MIMO) detectors for MIMO systems with large number of antennas in high-order quadrature amplitude modulation (QAM) schemes has been a major challenge in the literature. To address this challenge, this book introduces a novel scalable pipelined VLSI ar- chitecture for a 4 X 4 64-QAM MIMO receiver based on K-Best lattice decoders. The key contribution is a means of expanding/visiting the intermediate nodes of the search tree on-demand, rather than exhaustively along with three types of dis- tributed sorters operating in a pipelined structure. The combined expansion and sorting cores are able to find the K best candidates in K clock cycles. The pro- posed architecture has a fixed critical path independent of the constellation order, on-demand expansion scheme, efficient distributed sorters, and is scalable to a higher number of antennas/constellation orders. Fabricated in 0.13um CMOS, it operates at a significantly higher throughput than currently reported schemes.

VLSI Digital Signal Processing Systems

VLSI Digital Signal Processing Systems PDF Author: Keshab K. Parhi
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 824

Book Description
Digital audio, speech recognition, cable modems, radar, high-definition television-these are but a few of the modern computer and communications applications relying on digital signal processing (DSP) and the attendant application-specific integrated circuits (ASICs). As information-age industries constantly reinvent ASIC chips for lower power consumption and higher efficiency, there is a growing need for designers who are current and fluent in VLSI design methodologies for DSP. Enter VLSI Digital Signal Processing Systems-a unique, comprehensive guide to performance optimization techniques in VLSI signal processing. Based on Keshab Parhi's highly respected and popular graduate-level courses, this volume is destined to become the standard text and reference in the field. This text integrates VLSI architecture theory and algorithms, addresses various architectures at the implementation level, and presents several approaches to analysis, estimation, and reduction of power consumption. Throughout this book, Dr. Parhi explains how to design high-speed, low-area, and low-power VLSI systems for a broad range of DSP applications. He covers pipelining extensively as well as numerous other techniques, from parallel processing to scaling and roundoff noise computation. Readers are shown how to apply all techniques to improve implementations of several DSP algorithms, using both ASICs and off-the-shelf programmable digital signal processors. The book features hundreds of graphs illustrating the various DSP algorithms, examples based on digital filters and transforms clarifying key concepts, and interesting end-of-chapter exercises that help match techniques with applications. In addition, the abundance of readily available techniques makes this an extremely useful resource for designers of DSP systems in wired, wireless, or multimedia communications. The material can be easily adopted in new courses on either VLSI digital signal processing architectures or high-performance VLSI system design. An invaluable reference and practical guide to VLSI digital signal processing. A tremendous source of optimization techniques indispensable in modern VLSI signal processing, VLSI Digital Signal Processing Systems promises to become the standard in the field. It offers a rich training ground for students of VLSI design for digital signal processing and provides immediate access to state-of-the-art, proven techniques for designers of DSP applications-in wired, wireless, or multimedia communications. Topics include: * Transformations for high speed using pipelining, retiming, and parallel processing techniques * Power reduction transformations for supply voltage reduction as well as for strength or capacitance reduction * Area reduction using folding techniques * Strategies for arithmetic implementation * Synchronous, wave, and asynchronous pipelining * Design of programmable DSPs. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

VLSI Signal Processing Technology

VLSI Signal Processing Technology PDF Author: Magdy A. Bayoumi
Publisher: Springer Science & Business Media
ISBN: 1461527767
Category : Science
Languages : en
Pages : 242

Book Description
This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro cessors and architectures - several examples and case studies of existing DSP chips are discussed in Chapter 1. • Features and requirements of image and video signal processing architectures - both applications specific integrated circuits (ASICs) and programmable image processors are studied in Chapter 2. • New market areas for signal processing - especially in consumer electronics such as multimedia, teleconferencing, and movie on demand. • Impact of arithmetic circuitry on the performance of DSP pro cessors - several topics are discussed in Chapter 3 such as: number representation, arithmetic algorithms and circuits, and implementa tion.

High Performance VLSI Algorithms and Architectures for Digital Signal Processing

High Performance VLSI Algorithms and Architectures for Digital Signal Processing PDF Author: Paul Ming Yu Chau
Publisher:
ISBN:
Category : Integrated circuits
Languages : en
Pages : 916

Book Description


Sparse Signal Processing for Massive MIMO Communications

Sparse Signal Processing for Massive MIMO Communications PDF Author: Zhen Gao
Publisher: Springer Nature
ISBN: 9819953944
Category :
Languages : en
Pages : 225

Book Description