Author: Nikolas G Bourbakis
Publisher: World Scientific
ISBN: 981449903X
Category : Computers
Languages : en
Pages : 545
Book Description
Contents:A New Way to Acquire Knowledge (H-Y Wang)An SPN Knowledge Representation Scheme (J Gattiker & N Bourbakis)On the Deep Structures of Word Problems and Their Construction (F Gomez)Resolving Conflicts in Inheritance Reasoning with Statistical Approach (C W Lee)Integrating High and Low Level Computer Vision for Scene Understanding (R Malik & S So)The Evolution of Commercial AI Tools: The First Decade (F Hayes-Roth)Reengineering: The AI Generation — Billions on the Table (J S Minor Jr)An Intelligent Tool for Discovering Data Dependencies in Relational DBS (P Gavaskar & F Golshani)A Case-Based Reasoning (CBR) Tool to Assist Traffic Flow (B Das & S Bayles)A Study of Financial Expert System Based on Flops (T Kaneko & K Takenaka)An Associative Data Parallel Compilation Model for Tight Integration of High Performance Knowledge Retrieval and Computation (A K Bansal)Software Automation: From Silly to Intelligent (J-F Xu et al.)Software Engineering Using Artificial Intelligence: The Knowledge Based Software Assistant (D White)Knowledge Based Derivation of Programs from Specifications (T Weight et al.)Automatic Functional Model Generation for Parallel Fault Design Error Simulations (S-E Chang & S A Szygenda)Visual Reverse Engineering Using SPNs for Automated Diagnosis and Functional Simulation of Digital Circuits (J Gattiker & S Mertoguno)The Impact of AI in VLSI Design Automation (M Mortazavi & N Bourbakis)The Automated Acquisition of Subcategorizations of Verbs, Nouns and Adjectives from Sample Sentences (F Gomez)General Method for Planning and Rendezvous Problems (K I Trovato)Learning to Improve Path Planning Performance (P C Chen)Incremental Adaptation as a Method to Improve Reactive Behavior (A J Hendriks & D M Lyons)An SPN-Neural Planning Methodology for Coordination of Multiple Robotic Arms with Constrained Placement (N Bourbakis & A Tascillo) Readership: Computer scientists, artificial intelligence practitioners and robotics users. keywords:
Artificial Intelligence And Automation
Author: Nikolas G Bourbakis
Publisher: World Scientific
ISBN: 981449903X
Category : Computers
Languages : en
Pages : 545
Book Description
Contents:A New Way to Acquire Knowledge (H-Y Wang)An SPN Knowledge Representation Scheme (J Gattiker & N Bourbakis)On the Deep Structures of Word Problems and Their Construction (F Gomez)Resolving Conflicts in Inheritance Reasoning with Statistical Approach (C W Lee)Integrating High and Low Level Computer Vision for Scene Understanding (R Malik & S So)The Evolution of Commercial AI Tools: The First Decade (F Hayes-Roth)Reengineering: The AI Generation — Billions on the Table (J S Minor Jr)An Intelligent Tool for Discovering Data Dependencies in Relational DBS (P Gavaskar & F Golshani)A Case-Based Reasoning (CBR) Tool to Assist Traffic Flow (B Das & S Bayles)A Study of Financial Expert System Based on Flops (T Kaneko & K Takenaka)An Associative Data Parallel Compilation Model for Tight Integration of High Performance Knowledge Retrieval and Computation (A K Bansal)Software Automation: From Silly to Intelligent (J-F Xu et al.)Software Engineering Using Artificial Intelligence: The Knowledge Based Software Assistant (D White)Knowledge Based Derivation of Programs from Specifications (T Weight et al.)Automatic Functional Model Generation for Parallel Fault Design Error Simulations (S-E Chang & S A Szygenda)Visual Reverse Engineering Using SPNs for Automated Diagnosis and Functional Simulation of Digital Circuits (J Gattiker & S Mertoguno)The Impact of AI in VLSI Design Automation (M Mortazavi & N Bourbakis)The Automated Acquisition of Subcategorizations of Verbs, Nouns and Adjectives from Sample Sentences (F Gomez)General Method for Planning and Rendezvous Problems (K I Trovato)Learning to Improve Path Planning Performance (P C Chen)Incremental Adaptation as a Method to Improve Reactive Behavior (A J Hendriks & D M Lyons)An SPN-Neural Planning Methodology for Coordination of Multiple Robotic Arms with Constrained Placement (N Bourbakis & A Tascillo) Readership: Computer scientists, artificial intelligence practitioners and robotics users. keywords:
Publisher: World Scientific
ISBN: 981449903X
Category : Computers
Languages : en
Pages : 545
Book Description
Contents:A New Way to Acquire Knowledge (H-Y Wang)An SPN Knowledge Representation Scheme (J Gattiker & N Bourbakis)On the Deep Structures of Word Problems and Their Construction (F Gomez)Resolving Conflicts in Inheritance Reasoning with Statistical Approach (C W Lee)Integrating High and Low Level Computer Vision for Scene Understanding (R Malik & S So)The Evolution of Commercial AI Tools: The First Decade (F Hayes-Roth)Reengineering: The AI Generation — Billions on the Table (J S Minor Jr)An Intelligent Tool for Discovering Data Dependencies in Relational DBS (P Gavaskar & F Golshani)A Case-Based Reasoning (CBR) Tool to Assist Traffic Flow (B Das & S Bayles)A Study of Financial Expert System Based on Flops (T Kaneko & K Takenaka)An Associative Data Parallel Compilation Model for Tight Integration of High Performance Knowledge Retrieval and Computation (A K Bansal)Software Automation: From Silly to Intelligent (J-F Xu et al.)Software Engineering Using Artificial Intelligence: The Knowledge Based Software Assistant (D White)Knowledge Based Derivation of Programs from Specifications (T Weight et al.)Automatic Functional Model Generation for Parallel Fault Design Error Simulations (S-E Chang & S A Szygenda)Visual Reverse Engineering Using SPNs for Automated Diagnosis and Functional Simulation of Digital Circuits (J Gattiker & S Mertoguno)The Impact of AI in VLSI Design Automation (M Mortazavi & N Bourbakis)The Automated Acquisition of Subcategorizations of Verbs, Nouns and Adjectives from Sample Sentences (F Gomez)General Method for Planning and Rendezvous Problems (K I Trovato)Learning to Improve Path Planning Performance (P C Chen)Incremental Adaptation as a Method to Improve Reactive Behavior (A J Hendriks & D M Lyons)An SPN-Neural Planning Methodology for Coordination of Multiple Robotic Arms with Constrained Placement (N Bourbakis & A Tascillo) Readership: Computer scientists, artificial intelligence practitioners and robotics users. keywords:
VLSI for Artificial Intelligence and Neural Networks
Author: Jose G. Delgado-Frias
Publisher: Springer Science & Business Media
ISBN: 1461537525
Category : Computers
Languages : en
Pages : 411
Book Description
This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.
Publisher: Springer Science & Business Media
ISBN: 1461537525
Category : Computers
Languages : en
Pages : 411
Book Description
This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.
VLSI and Hardware Implementations using Modern Machine Learning Methods
Author: Sandeep Saini
Publisher: CRC Press
ISBN: 1000523810
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
Publisher: CRC Press
ISBN: 1000523810
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
Machine Learning in VLSI Computer-Aided Design
Author: Ibrahim (Abe) M. Elfadel
Publisher: Springer
ISBN: 3030046664
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
Publisher: Springer
ISBN: 3030046664
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
Neural Information Processing and VLSI
Author: Bing J. Sheu
Publisher: Springer Science & Business Media
ISBN: 1461522471
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Publisher: Springer Science & Business Media
ISBN: 1461522471
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Analog VLSI
Author: Shih-Chii Liu
Publisher: MIT Press
ISBN: 9780262122559
Category : Computers
Languages : en
Pages : 466
Book Description
An introduction to the design of analog VLSI circuits. Neuromorphic engineers work to improve the performance of artificial systems through the development of chips and systems that process information collectively using primarily analog circuits. This book presents the central concepts required for the creative and successful design of analog VLSI circuits. The discussion is weighted toward novel circuits that emulate natural signal processing. Unlike most circuits in commercial or industrial applications, these circuits operate mainly in the subthreshold or weak inversion region. Moreover, their functionality is not limited to linear operations, but also encompasses many interesting nonlinear operations similar to those occurring in natural systems. Topics include device physics, linear and nonlinear circuit forms, translinear circuits, photodetectors, floating-gate devices, noise analysis, and process technology.
Publisher: MIT Press
ISBN: 9780262122559
Category : Computers
Languages : en
Pages : 466
Book Description
An introduction to the design of analog VLSI circuits. Neuromorphic engineers work to improve the performance of artificial systems through the development of chips and systems that process information collectively using primarily analog circuits. This book presents the central concepts required for the creative and successful design of analog VLSI circuits. The discussion is weighted toward novel circuits that emulate natural signal processing. Unlike most circuits in commercial or industrial applications, these circuits operate mainly in the subthreshold or weak inversion region. Moreover, their functionality is not limited to linear operations, but also encompasses many interesting nonlinear operations similar to those occurring in natural systems. Topics include device physics, linear and nonlinear circuit forms, translinear circuits, photodetectors, floating-gate devices, noise analysis, and process technology.
Analog VLSI and Neural Systems
Author: Carver Mead
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 416
Book Description
A self-contained text, suitable for a broad audience. Presents basic concepts in electronics, transistor physics, and neurobiology for readers without backgrounds in those areas. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 416
Book Description
A self-contained text, suitable for a broad audience. Presents basic concepts in electronics, transistor physics, and neurobiology for readers without backgrounds in those areas. Annotation copyrighted by Book News, Inc., Portland, OR
VLSI for Neural Networks and Artificial Intelligence
Author: Jose G. Delgado-Frias
Publisher: Springer Science & Business Media
ISBN: 1489913319
Category : Computers
Languages : en
Pages : 318
Book Description
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
Publisher: Springer Science & Business Media
ISBN: 1489913319
Category : Computers
Languages : en
Pages : 318
Book Description
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
Artificial Intelligence and Automation
Author: Nikolaos G. Bourbakis
Publisher: World Scientific
ISBN: 9789810226374
Category : Computers
Languages : en
Pages : 560
Book Description
Publisher: World Scientific
ISBN: 9789810226374
Category : Computers
Languages : en
Pages : 560
Book Description
AI Techniques for Reliability Prediction for Electronic Components
Author: Bhargava, Cherry
Publisher: IGI Global
ISBN: 1799814661
Category : Computers
Languages : en
Pages : 330
Book Description
In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry. AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.
Publisher: IGI Global
ISBN: 1799814661
Category : Computers
Languages : en
Pages : 330
Book Description
In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry. AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.