Visualization of Scalar Adaptive Mesh Refinement Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Visualization of Scalar Adaptive Mesh Refinement Data PDF full book. Access full book title Visualization of Scalar Adaptive Mesh Refinement Data by . Download full books in PDF and EPUB format.

Visualization of Scalar Adaptive Mesh Refinement Data

Visualization of Scalar Adaptive Mesh Refinement Data PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.

Visualization of Scalar Adaptive Mesh Refinement Data

Visualization of Scalar Adaptive Mesh Refinement Data PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.

Visualization of Adaptive Mesh Refinement Data and Topology Based Exploration of Volume Data

Visualization of Adaptive Mesh Refinement Data and Topology Based Exploration of Volume Data PDF Author: Gunther H. Weber
Publisher:
ISBN: 9783936890211
Category :
Languages : en
Pages : 169

Book Description


Visualization of Time-dependent Adaptive Mesh Refinement Data

Visualization of Time-dependent Adaptive Mesh Refinement Data PDF Author: Ralf Kähler
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Book Description


Adaptive View-dependent Multi-valued Volume Data Visualization Using Data-dependent and Data-independent Error Metrics

Adaptive View-dependent Multi-valued Volume Data Visualization Using Data-dependent and Data-independent Error Metrics PDF Author: Jevan Teper Gray
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Book Description


Mathematical Visualization

Mathematical Visualization PDF Author: H.-C. Hege
Publisher: Springer Science & Business Media
ISBN: 3662035677
Category : Mathematics
Languages : en
Pages : 398

Book Description
Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.

Meshless Methods for Volume Visualization

Meshless Methods for Volume Visualization PDF Author: Christopher S. Co
Publisher:
ISBN:
Category :
Languages : en
Pages : 154

Book Description


Hierarchical and Geometrical Methods in Scientific Visualization

Hierarchical and Geometrical Methods in Scientific Visualization PDF Author: Gerald Farin
Publisher: Springer Science & Business Media
ISBN: 3642557872
Category : Technology & Engineering
Languages : en
Pages : 363

Book Description
The nature of the physical Universe has been increasingly better understood in recent years, and cosmological concepts have undergone a rapid evolution (see, e.g., [11], [2],or [5]). Although there are alternate theories, it is generally believed that the large-scale relationships and homogeneities that we see can only be explainedby having the universe expand suddenlyin a very early “in?ationary” period. Subsequent evolution of the Universe is described by the Hubble expansion, the observation that the galaxies are ?ying away from each other. We can attribute di?erent rates of this expansion to domination of di?erent cosmological processes, beginning with radiation, evolving to matter domination, and, relatively recently, to vacuum domination (the Cosmological Constant term)[4]. We assume throughout that we will be relying as much as possible on observational data, with simulations used only for limited purposes, e.g., the appearance of the Milky Wayfrom nearbyintergalactic viewpoints. The visualization of large-scale astronomical data sets using?xed, non-interactive animations has a long history. Several books and ?lms exist, ranging from “Cosmic View: The Universe in Forty Jumps” [3] by Kees Boeke to “Powers of 10” [6,13] by Charles and Ray Eames, and the recent Imax ?lm “Cosmic Voyage” [15]. We have added our own contribution [9], “Cosmic Clock,” which is an animation based entirely on the concepts and implementation described in this paper.

Numerical Modeling of Space Plasma Flows

Numerical Modeling of Space Plasma Flows PDF Author: Astronomical Society of the Pacific
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 372

Book Description
"This volume is based on talks given at ASTRONUM-2007. This conference is the second in a series of international conferences organized by the Institute of Geophysics and Planetary Physics of the University of California at Riverside and the Laboratory for Research of the Fundamental Laws of the Universe of the French Commissariat of Atomic Energy. The conference subjects include turbulence and cosmic ray transport, astrophysical flows, space plasma flows, kinetic and hybrid simulations, numerical methods, algorithms, and frameworks, and data handling and visualization. All of these are of great importance for scientists investigating solar structure, the heliosphere, the Sun-Earth connection, and various astrophysical phenomena. The problems discussed at the conference involved significantly different scales, regions, or particle populations for which several sets of defining equations or concepts are necessary to understand the physical system in its entirety. This book will be of interest to specialists in applied mathematics, astrophysics, space physics, and computer science who apply novel numerical algorithms to the contemporary problems in these fields. Graduate students will find it a useful reference of the fundamental approaches to solving the fluid dynamics and Boltzmann equations governing space plasma flows." -- publisher's website

Adaptive Mesh Refinement - Theory and Applications

Adaptive Mesh Refinement - Theory and Applications PDF Author: Tomasz Plewa
Publisher: Springer Science & Business Media
ISBN: 3540270396
Category : Mathematics
Languages : en
Pages : 550

Book Description
Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.

Simulation and Visualization on the Grid

Simulation and Visualization on the Grid PDF Author: Björn Engquist
Publisher: Springer Science & Business Media
ISBN: 3642573134
Category : Science
Languages : en
Pages : 317

Book Description
It is now 30 years since the network for digital communication, the ARPA-net, first came into operation. Since the first experiments with sending electronic mail and performing file transfers, the development of networks has been truly remarkable. Today's Internet continues to develop at an exponential rate that even surpasses that of computing and storage technologies. About five years after being commercialized, it has become as pervasive as the tele phone had become 30 years after its initial deployment. In the United States, the size of the Internet industry already exceeds that of the auto industry, which has been in existence for about 100 years. The exponentially increas ing capabilities of communication, computing, and storage systems is also reshaping the way science and engineering are pursued. Large-scale simulation studies in chemistry, physics, engineering, and sev eral other disciplines may now produce data sets of ,several terabytes or petabytes. Similarly, almost all measurements today produce data in digital form, whether from collections of sensors, three-dimensional digital images, or video. These data sets often represent complex phenomena that require rich visualization capabilities and efficient data-mining techniques to under stand. Furthermore, the data may be produced and archived in several differ ent locations, and the analysis carried out by teams with members at several locations-possibly distinct from those with significant storage, computation, or visualization facilities. The emerging computational Grids enable the transparent use of remote instruments, computational and data resources.