Author: Brett R. Fajen
Publisher: Cambridge University Press
ISBN: 1108876110
Category : Psychology
Languages : en
Pages : 126
Book Description
This Element examines visual perception in the context of activities that involve moving about in complex, dynamic environments. A central theme is that the ability of humans and other animals to perceive their surroundings based on vision is profoundly shaped by the need to adaptively regulate locomotion to variations in the environment. As such, important new insights into what and how we perceive can be gleaned by investigating the connection between vision and the control of locomotion. I present an integrated summary of decades of research on the perception of self-motion and object motion based on optic flow, the perception of spatial layout and affordances, and the control strategies for guiding locomotion based on visual information. I also explore important theoretical issues and debates, including the question of whether visual control relies on internal models.
Visual Control of Locomotion
Author: Brett R. Fajen
Publisher: Cambridge University Press
ISBN: 1108876110
Category : Psychology
Languages : en
Pages : 126
Book Description
This Element examines visual perception in the context of activities that involve moving about in complex, dynamic environments. A central theme is that the ability of humans and other animals to perceive their surroundings based on vision is profoundly shaped by the need to adaptively regulate locomotion to variations in the environment. As such, important new insights into what and how we perceive can be gleaned by investigating the connection between vision and the control of locomotion. I present an integrated summary of decades of research on the perception of self-motion and object motion based on optic flow, the perception of spatial layout and affordances, and the control strategies for guiding locomotion based on visual information. I also explore important theoretical issues and debates, including the question of whether visual control relies on internal models.
Publisher: Cambridge University Press
ISBN: 1108876110
Category : Psychology
Languages : en
Pages : 126
Book Description
This Element examines visual perception in the context of activities that involve moving about in complex, dynamic environments. A central theme is that the ability of humans and other animals to perceive their surroundings based on vision is profoundly shaped by the need to adaptively regulate locomotion to variations in the environment. As such, important new insights into what and how we perceive can be gleaned by investigating the connection between vision and the control of locomotion. I present an integrated summary of decades of research on the perception of self-motion and object motion based on optic flow, the perception of spatial layout and affordances, and the control strategies for guiding locomotion based on visual information. I also explore important theoretical issues and debates, including the question of whether visual control relies on internal models.
Digital Human Modeling
Author: Vincent D. Duffy
Publisher: Springer
ISBN: 3540733213
Category : Computers
Languages : en
Pages : 1083
Book Description
This book constitutes the refereed proceedings of the First International Conference on Digital Human Modeling, DHM 2007, held in Beijing, China in July 2007. The papers thoroughly cover the thematic area of digital human modeling, addressing the following major topics: shape and movement modeling and anthropometry, building and applying virtual humans, medical and rehabilitation applications, as well as industrial and ergonomic applications.
Publisher: Springer
ISBN: 3540733213
Category : Computers
Languages : en
Pages : 1083
Book Description
This book constitutes the refereed proceedings of the First International Conference on Digital Human Modeling, DHM 2007, held in Beijing, China in July 2007. The papers thoroughly cover the thematic area of digital human modeling, addressing the following major topics: shape and movement modeling and anthropometry, building and applying virtual humans, medical and rehabilitation applications, as well as industrial and ergonomic applications.
Adaptive Motion of Animals and Machines
Author: Hiroshi Kimura
Publisher: Springer Science & Business Media
ISBN: 4431313818
Category : Computers
Languages : en
Pages : 298
Book Description
• Motivation It is our dream to understand the principles of animals’ remarkable ability for adaptive motion and to transfer such abilities to a robot. Up to now, mechanisms for generation and control of stereotyped motions and adaptive motions in well-known simple environments have been formulated to some extentandsuccessfullyappliedtorobots.However,principlesofadaptationto variousenvironmentshavenotyetbeenclari?ed,andautonomousadaptation remains unsolved as a seriously di?cult problem in robotics. Apparently, the ability of animals and robots to adapt in a real world cannot be explained or realized by one single function in a control system and mechanism. That is, adaptation in motion is induced at every level from thecentralnervoussystemtothemusculoskeletalsystem.Thus,weorganized the International Symposium on Adaptive Motion in Animals and Machines(AMAM)forscientistsandengineersconcernedwithadaptation onvariouslevelstobebroughttogethertodiscussprinciplesateachleveland to investigate principles governing total systems. • History AMAM started in Montreal (Canada) in August 2000. It was organized by H. Kimura (Japan), H. Witte (Germany), G. Taga (Japan), and K. Osuka (Japan), who had agreed that having a small symposium on motion control, with people from several ?elds coming together to discuss speci?c issues, was worthwhile. Those four organizing committee members determined the scope of AMAM as follows.
Publisher: Springer Science & Business Media
ISBN: 4431313818
Category : Computers
Languages : en
Pages : 298
Book Description
• Motivation It is our dream to understand the principles of animals’ remarkable ability for adaptive motion and to transfer such abilities to a robot. Up to now, mechanisms for generation and control of stereotyped motions and adaptive motions in well-known simple environments have been formulated to some extentandsuccessfullyappliedtorobots.However,principlesofadaptationto variousenvironmentshavenotyetbeenclari?ed,andautonomousadaptation remains unsolved as a seriously di?cult problem in robotics. Apparently, the ability of animals and robots to adapt in a real world cannot be explained or realized by one single function in a control system and mechanism. That is, adaptation in motion is induced at every level from thecentralnervoussystemtothemusculoskeletalsystem.Thus,weorganized the International Symposium on Adaptive Motion in Animals and Machines(AMAM)forscientistsandengineersconcernedwithadaptation onvariouslevelstobebroughttogethertodiscussprinciplesateachleveland to investigate principles governing total systems. • History AMAM started in Montreal (Canada) in August 2000. It was organized by H. Kimura (Japan), H. Witte (Germany), G. Taga (Japan), and K. Osuka (Japan), who had agreed that having a small symposium on motion control, with people from several ?elds coming together to discuss speci?c issues, was worthwhile. Those four organizing committee members determined the scope of AMAM as follows.
Locomotion and Posture in Older Adults
Author: Fabio Augusto Barbieri
Publisher: Springer
ISBN: 3319489801
Category : Medical
Languages : en
Pages : 461
Book Description
This book is an attempt to advance the discussion and improve our understanding about the effects of aging and movement disorders on motor control during walking and postural tasks. Despite these activities are performed daily, there is a high requirement of motor and neural systems in order to perform both tasks efficiently. Both walking and posture require a complex interaction of musculoskeletal and neural systems. However, the mechanisms used to control these tasks, as well as how they are planned and coordinated, are still a question of discussion among health professionals and researchers. In addition, this discussion is more interesting when the effects of aging are included in the context of locomotion and the postural control. The number of older individuals is 841 million in 2015, which is four times higher than the 202 million that lived in 1950. Aging causes many motor, sensorial and neural deficits, which impair locomotion and postural control in the elderly. The severity of this framework is worsened when the aging goes along with a movement disorder, such as Parkinson disease, Chorea, Dystonia, Huntington disease, etc. Therefore, the aim of this book is to highlight the influence of different aspects on planning, controlling and performing locomotion and posture tasks. In attempting to improve current knowledge in this field, invited authors present and discuss how environmental, sensorial, motor, cognitive and individual aspects influence the planning and performance of locomotor and postural activities. The major thrust of the book is to address the mechanisms involved in controlling and planning motor action in neurological healthy individuals, as well as in those who suffer from movement disorders or face the effects of aging, indicating the aspects that impair locomotion and postural control. In addition, new technologies, tools and interventions designed to manage the effects of aging and movement disorders are presented in the book.
Publisher: Springer
ISBN: 3319489801
Category : Medical
Languages : en
Pages : 461
Book Description
This book is an attempt to advance the discussion and improve our understanding about the effects of aging and movement disorders on motor control during walking and postural tasks. Despite these activities are performed daily, there is a high requirement of motor and neural systems in order to perform both tasks efficiently. Both walking and posture require a complex interaction of musculoskeletal and neural systems. However, the mechanisms used to control these tasks, as well as how they are planned and coordinated, are still a question of discussion among health professionals and researchers. In addition, this discussion is more interesting when the effects of aging are included in the context of locomotion and the postural control. The number of older individuals is 841 million in 2015, which is four times higher than the 202 million that lived in 1950. Aging causes many motor, sensorial and neural deficits, which impair locomotion and postural control in the elderly. The severity of this framework is worsened when the aging goes along with a movement disorder, such as Parkinson disease, Chorea, Dystonia, Huntington disease, etc. Therefore, the aim of this book is to highlight the influence of different aspects on planning, controlling and performing locomotion and posture tasks. In attempting to improve current knowledge in this field, invited authors present and discuss how environmental, sensorial, motor, cognitive and individual aspects influence the planning and performance of locomotor and postural activities. The major thrust of the book is to address the mechanisms involved in controlling and planning motor action in neurological healthy individuals, as well as in those who suffer from movement disorders or face the effects of aging, indicating the aspects that impair locomotion and postural control. In addition, new technologies, tools and interventions designed to manage the effects of aging and movement disorders are presented in the book.
Journal of Rehabilitation Research & Development
Neuro-motor control and feed-forward models of locomotion in humans
Author: Marco Iosa
Publisher: Frontiers Media SA
ISBN: 2889196143
Category : Human locomotion
Languages : en
Pages : 192
Book Description
Locomotion involves many different muscles and the need of controlling several degrees of freedom. Despite the Central Nervous System can finely control the contraction of individual muscles, emerging evidences indicate that strategies for the reduction of the complexity of movement and for compensating the sensorimotor delays may be adopted. Experimental evidences in animal and lately human model led to the concept of a central pattern generator (CPG) which suggests that circuitry within the distal part of CNS, i.e. spinal cord, can generate the basic locomotor patterns, even in the absence of sensory information. Different studies pointed out the role of CPG in the control of locomotion as well as others investigated the neuroplasticity of CPG allowing for gait recovery after spinal cord lesion. Literature was also focused on muscle synergies, i.e. the combination of (locomotor) functional modules, implemented in neuronal networks of the spinal cord, generating specific motor output by imposing a specific timing structure and appropriate weightings to muscle activations. Despite the great interest that this approach generated in the last years in the Scientific Community, large areas of investigations remain available for further improvement (e.g. the influence of afferent feedback and environmental constrains) for both experimental and simulated models. However, also supraspinal structures are involved during locomotion, and it has been shown that they are responsible for initiating and modifying the features of this basic rhythm, for stabilising the upright walking, and for coordinating movements in a dynamic changing environment. Furthermore, specific damages into spinal and supraspinal structures result in specific alterations of human locomotion, as evident in subjects with brain injuries such as stroke, brain trauma, or people with cerebral palsy, in people with death of dopaminergic neurons in the substantia nigra due to Parkinson’s disease, or in subjects with cerebellar dysfunctions, such as patients with ataxia. The role of cerebellum during locomotion has been shown to be related to coordination and adaptation of movements. Cerebellum is the structure of CNS where are conceivably located the internal models, that are neural representations miming meaningful aspects of our body, such as input/output characteristics of sensorimotor system. Internal model control has been shown to be at the basis of motor strategies for compensating delays or lacks in sensorimotor feedbacks, and some aspects of locomotion need predictive internal control, especially for improving gait dynamic stability, for avoiding obstacles or when sensory feedback is altered or lacking. Furthermore, despite internal model concepts are widespread in neuroscience and neurocognitive science, neurorehabilitation paid far too little attention to the potential role of internal model control on gait recovery. Many important scientists have contributed to this Research Topic with original studies, computational studies, and review articles focused on neural circuits and internal models involved in the control of human locomotion, aiming at understanding the role played in control of locomotion of different neural circuits located at brain, cerebellum, and spinal cord levels.
Publisher: Frontiers Media SA
ISBN: 2889196143
Category : Human locomotion
Languages : en
Pages : 192
Book Description
Locomotion involves many different muscles and the need of controlling several degrees of freedom. Despite the Central Nervous System can finely control the contraction of individual muscles, emerging evidences indicate that strategies for the reduction of the complexity of movement and for compensating the sensorimotor delays may be adopted. Experimental evidences in animal and lately human model led to the concept of a central pattern generator (CPG) which suggests that circuitry within the distal part of CNS, i.e. spinal cord, can generate the basic locomotor patterns, even in the absence of sensory information. Different studies pointed out the role of CPG in the control of locomotion as well as others investigated the neuroplasticity of CPG allowing for gait recovery after spinal cord lesion. Literature was also focused on muscle synergies, i.e. the combination of (locomotor) functional modules, implemented in neuronal networks of the spinal cord, generating specific motor output by imposing a specific timing structure and appropriate weightings to muscle activations. Despite the great interest that this approach generated in the last years in the Scientific Community, large areas of investigations remain available for further improvement (e.g. the influence of afferent feedback and environmental constrains) for both experimental and simulated models. However, also supraspinal structures are involved during locomotion, and it has been shown that they are responsible for initiating and modifying the features of this basic rhythm, for stabilising the upright walking, and for coordinating movements in a dynamic changing environment. Furthermore, specific damages into spinal and supraspinal structures result in specific alterations of human locomotion, as evident in subjects with brain injuries such as stroke, brain trauma, or people with cerebral palsy, in people with death of dopaminergic neurons in the substantia nigra due to Parkinson’s disease, or in subjects with cerebellar dysfunctions, such as patients with ataxia. The role of cerebellum during locomotion has been shown to be related to coordination and adaptation of movements. Cerebellum is the structure of CNS where are conceivably located the internal models, that are neural representations miming meaningful aspects of our body, such as input/output characteristics of sensorimotor system. Internal model control has been shown to be at the basis of motor strategies for compensating delays or lacks in sensorimotor feedbacks, and some aspects of locomotion need predictive internal control, especially for improving gait dynamic stability, for avoiding obstacles or when sensory feedback is altered or lacking. Furthermore, despite internal model concepts are widespread in neuroscience and neurocognitive science, neurorehabilitation paid far too little attention to the potential role of internal model control on gait recovery. Many important scientists have contributed to this Research Topic with original studies, computational studies, and review articles focused on neural circuits and internal models involved in the control of human locomotion, aiming at understanding the role played in control of locomotion of different neural circuits located at brain, cerebellum, and spinal cord levels.
Journal of Rehabilitation Research and Development
Journal of Rehabilitation R & D
Adaptability of Human Gait
Author: A.E. Patla
Publisher: Elsevier
ISBN: 0080867324
Category : Medical
Languages : en
Pages : 471
Book Description
A large number of volumes have been produced summarizing the work on generation and control of rhythmic movements, in particular locomotion. Unfortunately most of them focus on locomotor studies done on animals. This edited volume redresses that imbalance by focusing completely on human locomotor behaviour. The very nature of the problem has both necessitated and attracted researchers from a wide variety of disciplines ranging from psychology, neurophysiology, kinesiology, engineering, medicine to computer science. The different and unique perspectives they bring to this problem provide a comprehensive picture of the current state of knowledge on the generation and regulation of human locomotor behaviour.A common unifying theme of this volume is studying the adaptability of human gait to obtain insights into the control of locomotion. The intentional focus on "adaptability" is meant to draw attention to the importance of understanding the generation and regulation of "skilled locomotor behaviour" rather than just the generation of basic locomotor patterns which has been the major focus of animal studies. The synthesis chapter at the end of the volume examines how the questions posed, the technology, and the experimental and theoretical paradigms have evolved over the years, and what the future has in store for this important research domain.
Publisher: Elsevier
ISBN: 0080867324
Category : Medical
Languages : en
Pages : 471
Book Description
A large number of volumes have been produced summarizing the work on generation and control of rhythmic movements, in particular locomotion. Unfortunately most of them focus on locomotor studies done on animals. This edited volume redresses that imbalance by focusing completely on human locomotor behaviour. The very nature of the problem has both necessitated and attracted researchers from a wide variety of disciplines ranging from psychology, neurophysiology, kinesiology, engineering, medicine to computer science. The different and unique perspectives they bring to this problem provide a comprehensive picture of the current state of knowledge on the generation and regulation of human locomotor behaviour.A common unifying theme of this volume is studying the adaptability of human gait to obtain insights into the control of locomotion. The intentional focus on "adaptability" is meant to draw attention to the importance of understanding the generation and regulation of "skilled locomotor behaviour" rather than just the generation of basic locomotor patterns which has been the major focus of animal studies. The synthesis chapter at the end of the volume examines how the questions posed, the technology, and the experimental and theoretical paradigms have evolved over the years, and what the future has in store for this important research domain.
Awareness shaping or shaped by prediction and postdiction
Author: Yuki Yamada
Publisher: Frontiers Media SA
ISBN: 2889195325
Category : Awareness
Languages : en
Pages : 157
Book Description
We intuitively believe that we are aware of the external world as it is. Unfortunately, this is not entirely true. In fact, the capacity of our sensory system is too small to veridically perceive the world. To overcome this problem, the sensory system has to spatiotemporally integrate neural signals in order to interpret the external world. However, the spatiotemporal integration involves severe neural latencies. How does the sensory system keep up with the ever-changing external world? As later discussed, ‘prediction’ and ‘postdiction’ are essential keywords here. For example, the sensory system uses temporally preceding events to predict subsequent events (e.g., Nijhawan, 1994; Kerzel, 2003; Hubbard, 2005) even when the preceding event is subliminally presented (Schmidt, 2000). Moreover, internal prediction modulates the perception of action outcomes (Bays et al., 2005; Cardoso-Leite et al., 2010) and sense of agency (Wenke et al., 2010). Prediction is also an indispensable factor for movement planning and control (Kawato, 1999). On the other hand, the sensory system also makes use of subsequent events to postdictively interpret a preceding event (e.g. Eagleman & Sejnowski, 2000; Enns, 2002; Khuu et al., 2010; Kawabe, 2011, 2012; Miyazaki et al., 2010; Ono & Kitazawa, 2011) and it's much the same even for infancy (Newman et al., 2008). Moreover, it has also been proposed that sense of agency stems not only from predictive processing but also from postdictive inference (Ebert & Wegner, 2011). The existence of postdictive processing is also supported by several neuroscience studies (Kamitani & Shimojo, 1999; Lau et al., 2007). How prediction and postdiction shape awareness of the external world is an intriguing question. Prediction is involved with the encoding of incoming signals, whereas postdiction is related to a re-interpretation of already encoded signals. Given this perspective, prediction and postdiction may exist along a processing stream for a single external event. However, it is unclear whether, and if so how, prediction and postdiction interact with each other to shape awareness of the external world. Awareness of the external world may also shape prediction and/or postdiction. It is plausible that awareness of the external world drives the prediction and postdiction of future and past appearances of the world. However, the literature provides little information about the role of awareness of the external world in prediction and postdiction. This background propelled us to propose this research topic with the aim of offering a space for systematic discussion concerning the relationship between awareness, prediction and postdiction among researchers in broad research areas, such as psychology, psychophysics, neuroscience, cognitive science, philosophy, and so forth. We encouraged papers that address one or more of the following questions: 1) How does prediction shape awareness of the external world? 2) How does postdiction shape awareness of the external world? 3) How do prediction and postdiction interact with each other in shaping awareness of the external world? 4) How does awareness of the external world shape prediction/postdiction?
Publisher: Frontiers Media SA
ISBN: 2889195325
Category : Awareness
Languages : en
Pages : 157
Book Description
We intuitively believe that we are aware of the external world as it is. Unfortunately, this is not entirely true. In fact, the capacity of our sensory system is too small to veridically perceive the world. To overcome this problem, the sensory system has to spatiotemporally integrate neural signals in order to interpret the external world. However, the spatiotemporal integration involves severe neural latencies. How does the sensory system keep up with the ever-changing external world? As later discussed, ‘prediction’ and ‘postdiction’ are essential keywords here. For example, the sensory system uses temporally preceding events to predict subsequent events (e.g., Nijhawan, 1994; Kerzel, 2003; Hubbard, 2005) even when the preceding event is subliminally presented (Schmidt, 2000). Moreover, internal prediction modulates the perception of action outcomes (Bays et al., 2005; Cardoso-Leite et al., 2010) and sense of agency (Wenke et al., 2010). Prediction is also an indispensable factor for movement planning and control (Kawato, 1999). On the other hand, the sensory system also makes use of subsequent events to postdictively interpret a preceding event (e.g. Eagleman & Sejnowski, 2000; Enns, 2002; Khuu et al., 2010; Kawabe, 2011, 2012; Miyazaki et al., 2010; Ono & Kitazawa, 2011) and it's much the same even for infancy (Newman et al., 2008). Moreover, it has also been proposed that sense of agency stems not only from predictive processing but also from postdictive inference (Ebert & Wegner, 2011). The existence of postdictive processing is also supported by several neuroscience studies (Kamitani & Shimojo, 1999; Lau et al., 2007). How prediction and postdiction shape awareness of the external world is an intriguing question. Prediction is involved with the encoding of incoming signals, whereas postdiction is related to a re-interpretation of already encoded signals. Given this perspective, prediction and postdiction may exist along a processing stream for a single external event. However, it is unclear whether, and if so how, prediction and postdiction interact with each other to shape awareness of the external world. Awareness of the external world may also shape prediction and/or postdiction. It is plausible that awareness of the external world drives the prediction and postdiction of future and past appearances of the world. However, the literature provides little information about the role of awareness of the external world in prediction and postdiction. This background propelled us to propose this research topic with the aim of offering a space for systematic discussion concerning the relationship between awareness, prediction and postdiction among researchers in broad research areas, such as psychology, psychophysics, neuroscience, cognitive science, philosophy, and so forth. We encouraged papers that address one or more of the following questions: 1) How does prediction shape awareness of the external world? 2) How does postdiction shape awareness of the external world? 3) How do prediction and postdiction interact with each other in shaping awareness of the external world? 4) How does awareness of the external world shape prediction/postdiction?