Author: Paul A. Ghyzel
Publisher:
ISBN: 9781423533214
Category :
Languages : en
Pages : 128
Book Description
The role of Unmanned Aerial Vehicles (UAV) for modern military operations is expected to expand in the 21st Century, including increased deployment of UAVs from Navy ships at sea. Autonomous operation of UAVs from ships at sea requires the UAV to land on a moving ship using only passive sensors installed in the UAV. This thesis investigates the feasibility of using passive vision sensors installed in the UAV to estimate the UAV position relative to the moving platform. A navigation algorithm based on photogrammetry and perspective estimation is presented for numerically determining the relative position and orientation of an aircraft with respect to a ship that possesses three visibly significant points with known separation distances. Original image processing algorithms that reliably locate visually significant features in monochrome images are developed. Monochrome video imagery collected during flight test with an infrared video camera mounted in the nose of a UAV during actual landing approaches is presented. The navigation and image processing algorithms are combined to reduce the flight test images into vehicle position estimates. These position estimates are compared to truth data to demonstrate the feasibility of passive, vision-based sensors for aircraft navigation. Conclusions are drawn, and recommendations for further study are presented.
Vision-Based Navigation for Autonomous Landing of Unmanned Aerial Vehicles
Author: Paul A. Ghyzel
Publisher:
ISBN: 9781423533214
Category :
Languages : en
Pages : 128
Book Description
The role of Unmanned Aerial Vehicles (UAV) for modern military operations is expected to expand in the 21st Century, including increased deployment of UAVs from Navy ships at sea. Autonomous operation of UAVs from ships at sea requires the UAV to land on a moving ship using only passive sensors installed in the UAV. This thesis investigates the feasibility of using passive vision sensors installed in the UAV to estimate the UAV position relative to the moving platform. A navigation algorithm based on photogrammetry and perspective estimation is presented for numerically determining the relative position and orientation of an aircraft with respect to a ship that possesses three visibly significant points with known separation distances. Original image processing algorithms that reliably locate visually significant features in monochrome images are developed. Monochrome video imagery collected during flight test with an infrared video camera mounted in the nose of a UAV during actual landing approaches is presented. The navigation and image processing algorithms are combined to reduce the flight test images into vehicle position estimates. These position estimates are compared to truth data to demonstrate the feasibility of passive, vision-based sensors for aircraft navigation. Conclusions are drawn, and recommendations for further study are presented.
Publisher:
ISBN: 9781423533214
Category :
Languages : en
Pages : 128
Book Description
The role of Unmanned Aerial Vehicles (UAV) for modern military operations is expected to expand in the 21st Century, including increased deployment of UAVs from Navy ships at sea. Autonomous operation of UAVs from ships at sea requires the UAV to land on a moving ship using only passive sensors installed in the UAV. This thesis investigates the feasibility of using passive vision sensors installed in the UAV to estimate the UAV position relative to the moving platform. A navigation algorithm based on photogrammetry and perspective estimation is presented for numerically determining the relative position and orientation of an aircraft with respect to a ship that possesses three visibly significant points with known separation distances. Original image processing algorithms that reliably locate visually significant features in monochrome images are developed. Monochrome video imagery collected during flight test with an infrared video camera mounted in the nose of a UAV during actual landing approaches is presented. The navigation and image processing algorithms are combined to reduce the flight test images into vehicle position estimates. These position estimates are compared to truth data to demonstrate the feasibility of passive, vision-based sensors for aircraft navigation. Conclusions are drawn, and recommendations for further study are presented.
Quad Rotorcraft Control
Author: Luis Rodolfo García Carrillo
Publisher: Springer Science & Business Media
ISBN: 144714399X
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
Quad Rotorcraft Control develops original control methods for the navigation and hovering flight of an autonomous mini-quad-rotor robotic helicopter. These methods use an imaging system and a combination of inertial and altitude sensors to localize and guide the movement of the unmanned aerial vehicle relative to its immediate environment. The history, classification and applications of UAVs are introduced, followed by a description of modelling techniques for quad-rotors and the experimental platform itself. A control strategy for the improvement of attitude stabilization in quad-rotors is then proposed and tested in real-time experiments. The strategy, based on the use low-cost components and with experimentally-established robustness, avoids drift in the UAV’s angular position by the addition of an internal control loop to each electronic speed controller ensuring that, during hovering flight, all four motors turn at almost the same speed. The quad-rotor’s Euler angles being very close to the origin, other sensors like GPS or image-sensing equipment can be incorporated to perform autonomous positioning or trajectory-tracking tasks. Two vision-based strategies, each designed to deal with a specific kind of mission, are introduced and separately tested. The first stabilizes the quad-rotor over a landing pad on the ground; it extracts the 3-dimensional position using homography estimation and derives translational velocity by optical flow calculation. The second combines colour-extraction and line-detection algorithms to control the quad-rotor’s 3-dimensional position and achieves forward velocity regulation during a road-following task. In order to estimate the translational-dynamical characteristics of the quad-rotor (relative position and translational velocity) as they evolve within a building or other unstructured, GPS-deprived environment, imaging, inertial and altitude sensors are combined in a state observer. The text give the reader a current view of the problems encountered in UAV control, specifically those relating to quad-rotor flying machines and it will interest researchers and graduate students working in that field. The vision-based control strategies presented help the reader to a better understanding of how an imaging system can be used to obtain the information required for performance of the hovering and navigation tasks ubiquitous in rotored UAV operation.
Publisher: Springer Science & Business Media
ISBN: 144714399X
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
Quad Rotorcraft Control develops original control methods for the navigation and hovering flight of an autonomous mini-quad-rotor robotic helicopter. These methods use an imaging system and a combination of inertial and altitude sensors to localize and guide the movement of the unmanned aerial vehicle relative to its immediate environment. The history, classification and applications of UAVs are introduced, followed by a description of modelling techniques for quad-rotors and the experimental platform itself. A control strategy for the improvement of attitude stabilization in quad-rotors is then proposed and tested in real-time experiments. The strategy, based on the use low-cost components and with experimentally-established robustness, avoids drift in the UAV’s angular position by the addition of an internal control loop to each electronic speed controller ensuring that, during hovering flight, all four motors turn at almost the same speed. The quad-rotor’s Euler angles being very close to the origin, other sensors like GPS or image-sensing equipment can be incorporated to perform autonomous positioning or trajectory-tracking tasks. Two vision-based strategies, each designed to deal with a specific kind of mission, are introduced and separately tested. The first stabilizes the quad-rotor over a landing pad on the ground; it extracts the 3-dimensional position using homography estimation and derives translational velocity by optical flow calculation. The second combines colour-extraction and line-detection algorithms to control the quad-rotor’s 3-dimensional position and achieves forward velocity regulation during a road-following task. In order to estimate the translational-dynamical characteristics of the quad-rotor (relative position and translational velocity) as they evolve within a building or other unstructured, GPS-deprived environment, imaging, inertial and altitude sensors are combined in a state observer. The text give the reader a current view of the problems encountered in UAV control, specifically those relating to quad-rotor flying machines and it will interest researchers and graduate students working in that field. The vision-based control strategies presented help the reader to a better understanding of how an imaging system can be used to obtain the information required for performance of the hovering and navigation tasks ubiquitous in rotored UAV operation.
Advances in Unmanned Aerial Vehicles
Author: Kimon P. Valavanis
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Field and Service Robotics
Author: Christian Laugier
Publisher: Springer Science & Business Media
ISBN: 3540754032
Category : Technology & Engineering
Languages : en
Pages : 589
Book Description
This books presents the results of the 6th edition of "Field and Service Robotics" FSR03, held in Chamonix, France, July 2007. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. This book offers a collection of a broad range of topics including: Underwater Robots and Systems, Autonomous Navigation for Unmanned Aerial Vehicles, Simultaneous Localization and Mapping, and Climbing Robotics.
Publisher: Springer Science & Business Media
ISBN: 3540754032
Category : Technology & Engineering
Languages : en
Pages : 589
Book Description
This books presents the results of the 6th edition of "Field and Service Robotics" FSR03, held in Chamonix, France, July 2007. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. This book offers a collection of a broad range of topics including: Underwater Robots and Systems, Autonomous Navigation for Unmanned Aerial Vehicles, Simultaneous Localization and Mapping, and Climbing Robotics.
Field and Service Robotics
Author: Marco Hutter
Publisher: Springer
ISBN: 3319673610
Category : Technology & Engineering
Languages : en
Pages : 701
Book Description
This book contains the proceedings of the 11th FSR (Field and Service Robotics), which is the leading single-track conference on applications of robotics in challenging environments. This conference was held in Zurich, Switzerland from 12-15 September 2017. The book contains 45 full-length, peer-reviewed papers organized into a variety of topics: Control, Computer Vision, Inspection, Machine Learning, Mapping, Navigation and Planning, and Systems and Tools. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling through Asia, Americas, and Europe.
Publisher: Springer
ISBN: 3319673610
Category : Technology & Engineering
Languages : en
Pages : 701
Book Description
This book contains the proceedings of the 11th FSR (Field and Service Robotics), which is the leading single-track conference on applications of robotics in challenging environments. This conference was held in Zurich, Switzerland from 12-15 September 2017. The book contains 45 full-length, peer-reviewed papers organized into a variety of topics: Control, Computer Vision, Inspection, Machine Learning, Mapping, Navigation and Planning, and Systems and Tools. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling through Asia, Americas, and Europe.
Autonomous Control of Unmanned Aerial Vehicles
Author: Victor Becerra
Publisher: MDPI
ISBN: 3039210300
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
Publisher: MDPI
ISBN: 3039210300
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
UAV Sensors for Environmental Monitoring
Author: Felipe Gonzalez Toro
Publisher: MDPI
ISBN: 3038427535
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
This book is a printed edition of the Special Issue "UAV Sensors for Environmental Monitoring" that was published in Sensors
Publisher: MDPI
ISBN: 3038427535
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
This book is a printed edition of the Special Issue "UAV Sensors for Environmental Monitoring" that was published in Sensors
An Invitation to 3-D Vision
Author: Yi Ma
Publisher: Springer Science & Business Media
ISBN: 0387217797
Category : Computers
Languages : en
Pages : 542
Book Description
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.
Publisher: Springer Science & Business Media
ISBN: 0387217797
Category : Computers
Languages : en
Pages : 542
Book Description
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.
Autonomous Flying Robots
Author: Kenzo Nonami
Publisher: Springer Science & Business Media
ISBN: 4431538569
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.
Publisher: Springer Science & Business Media
ISBN: 4431538569
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.
Unmanned Rotorcraft Systems
Author: Guowei Cai
Publisher: Springer Science & Business Media
ISBN: 0857296353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.
Publisher: Springer Science & Business Media
ISBN: 0857296353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.