Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic PDF full book. Access full book title Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic by Mahmut Dirik. Download full books in PDF and EPUB format.

Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic

Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic PDF Author: Mahmut Dirik
Publisher: Springer Nature
ISBN: 3030692477
Category : Technology & Engineering
Languages : en
Pages : 143

Book Description
The book includes topics, such as: path planning, avoiding obstacles, following the path, go-to-goal control, localization, and visual-based motion control. The theoretical concepts are illustrated with a developed control architecture with soft computing and artificial intelligence methods. The proposed vision-based motion control strategy involves three stages. The first stage consists of the overhead camera calibration and the configuration of the working environment. The second stage consists of a path planning strategy using several traditional path planning algorithms and proposed planning algorithm. The third stage consists of the path tracking process using previously developed Gauss and Decision Tree control approaches and the proposed Type-1 and Type-2 controllers. Two kinematic structures are utilized to acquire the input values of controllers. These are Triangle Shape-Based Controller Design, which was previously developed and Distance-Based Triangle Structure that is used for the first time in conducted experiments. Four different control algorithms, Type-1 fuzzy logic, Type-2 Fuzzy Logic, Decision Tree Control, and Gaussian Control have been used in overall system design. The developed system includes several modules that simplify characterizing the motion control of the robot and ensure that it maintains a safe distance without colliding with any obstacles on the way to the target. The topics of the book are extremely relevant in many areas of research, as well as in education in courses in computer science, electrical and mechanical engineering and in mathematics at the graduate and undergraduate levels.

Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic

Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic PDF Author: Mahmut Dirik
Publisher: Springer Nature
ISBN: 3030692477
Category : Technology & Engineering
Languages : en
Pages : 143

Book Description
The book includes topics, such as: path planning, avoiding obstacles, following the path, go-to-goal control, localization, and visual-based motion control. The theoretical concepts are illustrated with a developed control architecture with soft computing and artificial intelligence methods. The proposed vision-based motion control strategy involves three stages. The first stage consists of the overhead camera calibration and the configuration of the working environment. The second stage consists of a path planning strategy using several traditional path planning algorithms and proposed planning algorithm. The third stage consists of the path tracking process using previously developed Gauss and Decision Tree control approaches and the proposed Type-1 and Type-2 controllers. Two kinematic structures are utilized to acquire the input values of controllers. These are Triangle Shape-Based Controller Design, which was previously developed and Distance-Based Triangle Structure that is used for the first time in conducted experiments. Four different control algorithms, Type-1 fuzzy logic, Type-2 Fuzzy Logic, Decision Tree Control, and Gaussian Control have been used in overall system design. The developed system includes several modules that simplify characterizing the motion control of the robot and ensure that it maintains a safe distance without colliding with any obstacles on the way to the target. The topics of the book are extremely relevant in many areas of research, as well as in education in courses in computer science, electrical and mechanical engineering and in mathematics at the graduate and undergraduate levels.

Soft Computing for Problem Solving

Soft Computing for Problem Solving PDF Author: Jagdish Chand Bansal
Publisher: Springer
ISBN: 9811315957
Category : Technology & Engineering
Languages : en
Pages : 991

Book Description
This two-volume book presents outcomes of the 7th International Conference on Soft Computing for Problem Solving, SocProS 2017. This conference is a joint technical collaboration between the Soft Computing Research Society, Liverpool Hope University (UK), the Indian Institute of Technology Roorkee, the South Asian University New Delhi and the National Institute of Technology Silchar, and brings together researchers, engineers and practitioners to discuss thought-provoking developments and challenges in order to select potential future directions The book presents the latest advances and innovations in the interdisciplinary areas of soft computing, including original research papers in the areas including, but not limited to, algorithms (artificial immune systems, artificial neural networks, genetic algorithms, genetic programming, and particle swarm optimization) and applications (control systems, data mining and clustering, finance, weather forecasting, game theory, business and forecasting applications). It is a valuable resource for both young and experienced researchers dealing with complex and intricate real-world problems for which finding a solution by traditional methods is a difficult task.

Advances in Swarm Intelligence

Advances in Swarm Intelligence PDF Author: Ying Tan
Publisher: Springer
ISBN: 303026369X
Category : Computers
Languages : en
Pages : 462

Book Description
The two-volume set of LNCS 11655 and 11656 constitutes the proceedings of the 10th International Conference on Advances in Swarm Intelligence, ICSI 2019, held in Chiang Mai, Thailand, in June 2019. The total of 82 papers presented in these volumes was carefully reviewed and selected from 179 submissions. The papers were organized in topical sections as follows: Part I: Novel methods and algorithms for optimization; particle swarm optimization; ant colony optimization; fireworks algorithms and brain storm optimization; swarm intelligence algorithms and improvements; genetic algorithm and differential evolution; swarm robotics. Part II: Multi-agent system; multi-objective optimization; neural networks; machine learning; identification and recognition; social computing and knowledge graph; service quality and energy management.

Mobile Robot Navigation Using a Vision Based Approach

Mobile Robot Navigation Using a Vision Based Approach PDF Author: Mehmet Serdar Güzel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This study addresses the issue of vision based mobile robot navigation in a partially cluttered indoor environment using a mapless navigation strategy. The work focuses on two key problems, namely vision based obstacle avoidance and vision based reactive navigation strategy. The estimation of optical flow plays a key role in vision based obstacle avoidance problems, however the current view is that this technique is too sensitive to noise and distortion under real conditions. Accordingly, practical applications in real time robotics remain scarce. This dissertation presents a novel methodology for vision based obstacle avoidance, using a hybrid architecture. This integrates an appearance-based obstacle detection method into an optical flow architecture based upon a behavioural control strategy that includes a new arbitration module. This enhances the overall performance of conventional optical flow based navigation systems, enabling a robot to successfully move around without experiencing collisions. Behaviour based approaches have become the dominant methodologies for designing control strategies for robot navigation. Two different behaviour based navigation architectures have been proposed for the second problem, using monocular vision as the primary sensor and equipped with a 2-D range finder. Both utilize an accelerated version of the Scale Invariant Feature Transform (SIFT) algorithm. The first architecture employs a qualitative-based control algorithm to steer the robot towards a goal whilst avoiding obstacles, whereas the second employs an intelligent control framework. This allows the components of soft computing to be integrated into the proposed SIFT-based navigation architecture, conserving the same set of behaviours and system structure of the previously defined architecture. The intelligent framework incorporates a novel distance estimation technique using the scale parameters obtained from the SIFT algorithm. The technique employs scale parameters and a corresponding zooming factor as inputs to train a neural network which results in the determination of physical distance. Furthermore a fuzzy controller is designed and integrated into this framework so as to estimate linear velocity, and a neural network based solution is adopted to estimate the steering direction of the robot. As a result, this intelligent iv approach allows the robot to successfully complete its task in a smooth and robust manner without experiencing collision. MS Robotics Studio software was used to simulate the systems, and a modified Pioneer 3-DX mobile robot was used for real-time implementation. Several realistic scenarios were developed and comprehensive experiments conducted to evaluate the performance of the proposed navigation systems. KEY WORDS: Mobile robot navigation using vision, Mapless navigation, Mobile robot architecture, Distance estimation, Vision for obstacle avoidance, Scale Invariant Feature Transforms, Intelligent framework.

Knowledge-Based Vision-Guided Robots

Knowledge-Based Vision-Guided Robots PDF Author: Nick Barnes
Publisher: Physica
ISBN: 3790817805
Category : Computers
Languages : en
Pages : 240

Book Description
Many robotics researchers consider high-level vision algorithms (computational) too expensive for use in robot guidance. This book introduces the reader to an alternative approach to perception for autonomous, mobile robots. It explores how to apply methods of high-level computer vision and fuzzy logic to the guidance and control of the mobile robot. The book introduces a knowledge-based approach to vision modeling for robot guidance, where advantage is taken of constraints of the robot's physical structure, the tasks it performs, and the environments it works in. This facilitates high-level computer vision algorithms such as object recognition at a speed that is sufficient for real-time navigation. The texts presents algorithms that exploit these constraints at all levels of vision, from image processing to model construction and matching, as well as shape recovery. These algorithms are demonstrated in the navigation of a wheeled mobile robot.

IEEE International Symposium on Industrial Electronics Proceedings

IEEE International Symposium on Industrial Electronics Proceedings PDF Author:
Publisher:
ISBN:
Category : Industrial electronics
Languages : en
Pages : 778

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 836

Book Description


Principles of Robot Motion

Principles of Robot Motion PDF Author: Howie Choset
Publisher: MIT Press
ISBN: 9780262033275
Category : Technology & Engineering
Languages : en
Pages : 642

Book Description
A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.

Obstacle Avoidance of a Mobile Robot Using Fuzzy Logic Control

Obstacle Avoidance of a Mobile Robot Using Fuzzy Logic Control PDF Author: Mohamed Al-Mahdi Eshtawie
Publisher:
ISBN:
Category : Fuzzy logic
Languages : en
Pages : 320

Book Description
During the past several years fuzzy logic control (FLC) has emerged as one of the most active and fruitful areas for research in the application of intelligent system design. Presently, fufzy logic has found a variety of applications in various fields ranging from industrial pro~ess control to medical diagnosis and securities trading. Most notably, a fuzzy logic system has been applied to control nonlinear, time-varying, ill-defined systems, to control systems whose dynamics are not exactly known, as servomotors position control, and robot arm control, and to manage complex decision-making or diagnostic systems. This project has the objective of designing a fuzzy logic controller, which will be used to control the navigation process of an autonomous mobile robot in a completely unstructured environment. The navigation algorithm is proposed for static obstacles and with no priori knowledge about the environment. In addition, an on-line path planning is used while navigation. The controller will have its inputs from the sensors that will be mounted on the robot. The number of sensors used is five where, three of them will be on the front side of the robot, whereas, one on the left side and one on the right side. The FLC was designed using three different fuzzifiers (triangular, trapezoidal and Gaussian) to represent the sensor readings values so that they can be interpreted by the inference mechanism. Moreover, two different implication methods (Mamdani minimum and Mamdani Product) implications are used in the interpretation of the IF-THEN rules in the rule-base. Depending on the number of fuzzy sets used to represent the sensor readings, the total number of control rules used in the design was 243 at the first stage and then reduced to 108. In other words, if the number of fuzzy sets used to represent each sensor reading is three (far, near, and very near) then the total number of rules is 243 which is (~5). On the other hand, if the left and right sensors reading values were represented using only two fuzzy sets (far and near) then the total number of rules is 108 i.e. (33 *22). In addition, two defuzzification 'strategies (center of gravity and center average) were used to get the output of the FLC in a crisp value. It was observed that the triangular fuzzifier, center average defuzzification method, and the Mamdani minimum implication method with a total number of 108 rule are the best choices for the design.

Motion Planning in Dynamic Environments

Motion Planning in Dynamic Environments PDF Author: Kikuo Fujimura
Publisher: Springer Science & Business Media
ISBN: 4431681655
Category : Computers
Languages : en
Pages : 190

Book Description
Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. TOSIYASU L. KUNII To my parents Kenjiro and Nori Fujimura Preface Motion planning is an area in robotics that has received much attention recently. Much of the past research focuses on static environments - various methods have been developed and their characteristics have been well investigated. Although it is essential for autonomous intelligent robots to be able to navigate within dynamic worlds, the problem of motion planning in dynamic domains is relatively little understood compared with static problems.