Virtual Work Approach to Mechanical Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Virtual Work Approach to Mechanical Modeling PDF full book. Access full book title Virtual Work Approach to Mechanical Modeling by Jean Salençon. Download full books in PDF and EPUB format.

Virtual Work Approach to Mechanical Modeling

Virtual Work Approach to Mechanical Modeling PDF Author: Jean Salençon
Publisher: John Wiley & Sons
ISBN: 1119510635
Category : Mathematics
Languages : en
Pages : 368

Book Description
This book is centred about the Principle of virtual work and the related method for mechanical modelling. It aims at showing and enhancing the polyvalence and versatility of the virtual work approach in the mechanical modelling process. The virtual work statement is set as the principle at the root of a force modelling method that can be implemented on any geometrical description. After experimentally induced hypotheses have been made on the geometrical parameters that describe the concerned system and subsystems, the method provides a unifying framework for building up consistently associated force models where external and internal forces are introduced through their virtual rates of work. Systems described as three-dimensional, curvilinear or planar continua are considered: force models are established with the corresponding equations of motion; the validation process points out that enlarging the domain of relevance of the model for practical applications calls for an enrichment of the geometrical description that takes into account the underlying microstructure.

Virtual Work Approach to Mechanical Modeling

Virtual Work Approach to Mechanical Modeling PDF Author: Jean Salençon
Publisher: John Wiley & Sons
ISBN: 1119510597
Category : Mathematics
Languages : en
Pages : 312

Book Description
This book is centred about the Principle of virtual work and the related method for mechanical modelling. It aims at showing and enhancing the polyvalence and versatility of the virtual work approach in the mechanical modelling process. The virtual work statement is set as the principle at the root of a force modelling method that can be implemented on any geometrical description. After experimentally induced hypotheses have been made on the geometrical parameters that describe the concerned system and subsystems, the method provides a unifying framework for building up consistently associated force models where external and internal forces are introduced through their virtual rates of work. Systems described as three-dimensional, curvilinear or planar continua are considered: force models are established with the corresponding equations of motion; the validation process points out that enlarging the domain of relevance of the model for practical applications calls for an enrichment of the geometrical description that takes into account the underlying microstructure.

The Art of Modeling Mechanical Systems

The Art of Modeling Mechanical Systems PDF Author: Friedrich Pfeiffer
Publisher: Springer
ISBN: 3319402560
Category : Technology & Engineering
Languages : en
Pages : 392

Book Description
The papers in this volume present rules for mechanical models in a general systematic way, always in combination with small and large examples, many from industry, illustrating the most important features of modeling. The best way to reach a good solution is discussed. The papers address researchers and engineers from academia and from industry, doctoral students and postdocs, working in the fields of mechanical, civil and electrical engineering as well as in fields like applied physics or applied mathematics.

Dynamic Response of Linear Mechanical Systems

Dynamic Response of Linear Mechanical Systems PDF Author: Jorge Angeles
Publisher: Springer Science & Business Media
ISBN: 1441910271
Category : Technology & Engineering
Languages : en
Pages : 574

Book Description
Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each “Exercises” section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters

Virtual Design and Validation

Virtual Design and Validation PDF Author: Peter Wriggers
Publisher: Springer Nature
ISBN: 3030381560
Category : Science
Languages : en
Pages : 349

Book Description
This book provides an overview of the experimental characterization of materials and their numerical modeling, as well as the development of new computational methods for virtual design. Its 17 contributions are divided into four main sections: experiments and virtual design, composites, fractures and fatigue, and uncertainty quantification. The first section explores new experimental methods that can be used to more accurately characterize material behavior. Furthermore, it presents a combined experimental and numerical approach to optimizing the properties of a structure, as well as new developments in the field of computational methods for virtual design. In turn, the second section is dedicated to experimental and numerical investigations of composites, with a special focus on the modeling of failure modes and the optimization of these materials. Since fatigue also includes wear due to frictional contact and aging of elastomers, new numerical schemes in the field of crack modeling and fatigue prediction are also discussed. The input parameters of a classical numerical simulation represent mean values of actual observations, though certain deviations arise: to illustrate the uncertainties of parameters used in calculations, the book’s final section presents new and efficient approaches to uncertainty quantification.

Fundamentals of Multibody Dynamics

Fundamentals of Multibody Dynamics PDF Author: Farid Amirouche
Publisher: Springer Science & Business Media
ISBN: 9780817642365
Category : Technology & Engineering
Languages : en
Pages : 712

Book Description
This textbook – a result of the author’s many years of research and teaching – brings together diverse concepts of the versatile tool of multibody dynamics, combining the efforts of many researchers in the field of mechanics.

Advances on Mechanics, Design Engineering and Manufacturing II

Advances on Mechanics, Design Engineering and Manufacturing II PDF Author: Francisco Cavas-Martínez
Publisher: Springer
ISBN: 3030123464
Category : Technology & Engineering
Languages : en
Pages : 824

Book Description
This book contains the papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2018), held on 20-22 June 2018 in Cartagena, Spain. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into six main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.

Handbook of Continuum Mechanics

Handbook of Continuum Mechanics PDF Author: Jean Salencon
Publisher: Springer Science & Business Media
ISBN: 3642565425
Category : Science
Languages : en
Pages : 794

Book Description
Outstanding approach to continuum mechanics. Its high mathematical level of teaching together with abstracts, summaries, boxes of essential formulae and numerous exercises with solutions, makes this handbook one of most complete books in the area. Students, lecturers, and practitioners will find this handbook a rich source for their studies or daily work.

Evaluation of Scientific Sources in Mechanics

Evaluation of Scientific Sources in Mechanics PDF Author: Francesco dell'Isola
Publisher: Springer Nature
ISBN: 3030805506
Category : Science
Languages : en
Pages : 377

Book Description
This book evaluates the importance of various historical sources and discusses their role in the creation and transmission of scientific knowledge. It presents an annotated translation of the introductory words given by Johan Ludvig Heiberg to his translation of the works of Archimedes. Further, it offers English translations of and commentaries on selected fundamental works by Ernst Hellinger and Gabrio Piola, which lay the groundwork for the modern theory of advanced materials, and also examines the criteria used to evaluate scientific works.

Computational Solid Mechanics

Computational Solid Mechanics PDF Author: Marco L. Bittencourt
Publisher: CRC Press
ISBN: 1439860017
Category : Science
Languages : en
Pages : 677

Book Description
Presents a Systematic Approach for Modeling Mechanical Models Using Variational Formulation—Uses Real-World Examples and Applications of Mechanical Models Utilizing material developed in a classroom setting and tested over a 12-year period, Computational Solid Mechanics: Variational Formulation and High-Order Approximation details an approach that establishes a logical sequence for the treatment of any mechanical problem. Incorporating variational formulation based on the principle of virtual work, this text considers various aspects of mechanical models, explores analytical mechanics and their variational principles, and presents model approximations using the finite element method. It introduces the basics of mechanics for one-, two-, and three-dimensional models, emphasizes the simplification aspects required in their formulation, and provides relevant applications. Introduces Approximation Concepts Gradually throughout the Chapters Organized into ten chapters, this text provides a clear separation of formulation and finite element approximation. It details standard procedures to formulate and approximate models, while at the same time illustrating their application via software. Chapter one provides a general introduction to variational formulation and an overview of the mechanical models to be presented in the other chapters. Chapter two uses the concepts on equilibrium that readers should have to introduce basic notions on kinematics, duality, virtual work, and the PVW. Chapters three to ten present mechanical models, approximation and applications to bars, shafts, beams, beams with shear, general two- and three-dimensional beams, solids, plane models, and generic torsion and plates. Learn Theory Step by Step In each chapter, the material profiles all aspects of a specific mechanical model, and uses the same sequence of steps for all models. The steps include kinematics, strain, rigid body deformation, internal loads, external loads, equilibrium, constitutive equations, and structural design. The text uses MATLAB® scripts to calculate analytic and approximated solutions of the considered mechanical models. Computational Solid Mechanics: Variational Formulation and High Order Approximation presents mechanical models, their main hypothesis, and applications, and is intended for graduate and undergraduate engineering students taking courses in solid mechanics.

Mechanical System Design

Mechanical System Design PDF Author: K. U. Siddiqui
Publisher: New Age International Limited Publishers
ISBN: 9788122421149
Category : Engineering design
Languages : en
Pages : 384

Book Description
About the Book: The commonly referred to 'mechanical systems' today do not comprise only of mechanisms and mechanical components but often are results of multidisciplinary synthesis of mechanical, electronic, computer and information system based elements. Representative examples are a robot, a washing machine and a computer printer. To be able to evolve such products and work in multidisciplinary teams, a very clear understanding of flow of material, energy and information is needed; points of observation and places of interfaces to outside systems need to be specified. As compared to well-established products, these new products require to be evolved from the concept to function to design to prototyping and testing stages. Due to increasing short life of product designs, these proceses have to be carried out in ever decreasing time spans.This can be achieved often by resorting to model-based computer simulation, virtual prototyping and rapid prototyping techniques. Computer simulation requires mathematical model of the system to be built with all the interacting components and it leads to design development and optimization; virtual prototyping helps in designing real world interfaces and spatial description. Rapid prototyping helps in actual testing of the product. A systems-based approach to mechanical design helps in carrying out all these activities. Finally, an application of "A Case Study" method is followed. Contents: Introduction to Design of Systems Engineering Processes and the System Approach Design and Problem Formulation System Theories System Modelling Linear Graph Analysis Optimization Concepts System Evaluation Calculus Methods for Optimization Decision Analysis System Simulation Application of Mechanical System Design to Control System The Product Design Process Computer System Concept Bond Graph