Author: Takahisa Furukawa
Publisher: Springer
ISBN: 9784431563358
Category : Medical
Languages : en
Pages : 0
Book Description
This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.
Vertebrate Photoreceptors
Author: Takahisa Furukawa
Publisher: Springer
ISBN: 9784431563358
Category : Medical
Languages : en
Pages : 0
Book Description
This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.
Publisher: Springer
ISBN: 9784431563358
Category : Medical
Languages : en
Pages : 0
Book Description
This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.
Vertebrate Photoreceptor Optics
Author: J.M. Enoch
Publisher: Springer
ISBN:
Category : Medical
Languages : en
Pages : 512
Book Description
With contributions by numerous experts
Publisher: Springer
ISBN:
Category : Medical
Languages : en
Pages : 512
Book Description
With contributions by numerous experts
Vertebrate Photoreceptor Optics
Author: Jay M. Enoch
Publisher: Springer Verlag
ISBN: 9780387105154
Category : Science
Languages : en
Pages : 0
Book Description
Publisher: Springer Verlag
ISBN: 9780387105154
Category : Science
Languages : en
Pages : 0
Book Description
Photoreceptor Optics
Author: A.W. Snyder
Publisher: Springer Science & Business Media
ISBN: 3642809340
Category : Science
Languages : en
Pages : 523
Book Description
The above consideration indicates that at present many of the experi mental facts on PS in animals can be quantitatively explained within the limits of the "universal" photoreceptor membrane concept. Of course, existence of preferential orientation of the absorbing dipoles in the tubuli of the rhabdomeres can not be totally rejected. We hope that the concept of the "universal" photoreceptor membrane may serve as the useful instrument when dealing with newly discovered properties of visual cells so that true mechanisms of electrical and optical coupling will be searched for instead of assumptions being made on additional properties of the photoreceptor membrane in every new animal under study. 5. Absorption Spectrum of the Universal Photoreceptor Membrane and Spectral Sensitivity of the Photoreceptor 5. 1 Preliminary Notes It seems nearly self-evident that the absorption spectrum of the pho toreceptor membrane coincides exactly with that of the visual pigment it contains. Hence, the membrane must exhibit three bands of absorp tion - the principal band with its peak within the limits of visible spectrum (or a-peak); the secondary band between 340 and 380 nm (S peak); and the third, protein band, in the ultraviolet (UV) at 280 nm (COLLINS et al. , 1952). The main peak of absorption is located within the range 433-575 nm for retinol-based pigments and between 438 and 620 nm for 3-dehydroretinol-based pigments, the position of Amax de pending on many ecological factors.
Publisher: Springer Science & Business Media
ISBN: 3642809340
Category : Science
Languages : en
Pages : 523
Book Description
The above consideration indicates that at present many of the experi mental facts on PS in animals can be quantitatively explained within the limits of the "universal" photoreceptor membrane concept. Of course, existence of preferential orientation of the absorbing dipoles in the tubuli of the rhabdomeres can not be totally rejected. We hope that the concept of the "universal" photoreceptor membrane may serve as the useful instrument when dealing with newly discovered properties of visual cells so that true mechanisms of electrical and optical coupling will be searched for instead of assumptions being made on additional properties of the photoreceptor membrane in every new animal under study. 5. Absorption Spectrum of the Universal Photoreceptor Membrane and Spectral Sensitivity of the Photoreceptor 5. 1 Preliminary Notes It seems nearly self-evident that the absorption spectrum of the pho toreceptor membrane coincides exactly with that of the visual pigment it contains. Hence, the membrane must exhibit three bands of absorp tion - the principal band with its peak within the limits of visible spectrum (or a-peak); the secondary band between 340 and 380 nm (S peak); and the third, protein band, in the ultraviolet (UV) at 280 nm (COLLINS et al. , 1952). The main peak of absorption is located within the range 433-575 nm for retinol-based pigments and between 438 and 620 nm for 3-dehydroretinol-based pigments, the position of Amax de pending on many ecological factors.
Webvision
High Resolution Imaging in Microscopy and Ophthalmology
Author: Josef F. Bille
Publisher: Springer
ISBN: 3030166384
Category : Medical
Languages : en
Pages : 411
Book Description
This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.
Publisher: Springer
ISBN: 3030166384
Category : Medical
Languages : en
Pages : 411
Book Description
This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.
Drosophila Eye Development
Author: Kevin Moses
Publisher: Springer Science & Business Media
ISBN: 9783540425908
Category : Medical
Languages : en
Pages : 296
Book Description
1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
Publisher: Springer Science & Business Media
ISBN: 9783540425908
Category : Medical
Languages : en
Pages : 296
Book Description
1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
Vertebrate Photoreceptor Optics
Author: J.M. Enoch
Publisher: Springer
ISBN: 9783662135129
Category : Technology & Engineering
Languages : en
Pages : 486
Book Description
It is in the receptors of the vertebrate retina that the characteristic visual process - the transduction of radiational energy into physiological activtty of a different kind - takes place. The way these receptors modify or redistribute the incident radiation and thereby control the light ab sorption by the visual pigments they contain, is the central theme of this book. As far back as 1843 Brucke put forward a well-reasoned model for the optics of a receptor, assuming simple ray optics, and it is already some forty-seven years since the dependence of receptor sensitivity on retinal angle of incidence was established experimentally as an important factor in human vision and as one by which the direction of alignment of receptors in the living eye might be determined. But it is to Professor J. M. Enoch, editor and author of several major contributions to this volume, that we owe the first experimental demonstration (in 1961) of the wave-mode propa gation of light in vertebrate visual receptors, as well as the results of some thirty years devoted research concerned with all questions of receptor optics, particularly directional sensitivity and receptor alignment, both for normal vertebrate eyes and for pathologically modified eyes. His work on the latter has opened up a whole range of clinical possibilities.
Publisher: Springer
ISBN: 9783662135129
Category : Technology & Engineering
Languages : en
Pages : 486
Book Description
It is in the receptors of the vertebrate retina that the characteristic visual process - the transduction of radiational energy into physiological activtty of a different kind - takes place. The way these receptors modify or redistribute the incident radiation and thereby control the light ab sorption by the visual pigments they contain, is the central theme of this book. As far back as 1843 Brucke put forward a well-reasoned model for the optics of a receptor, assuming simple ray optics, and it is already some forty-seven years since the dependence of receptor sensitivity on retinal angle of incidence was established experimentally as an important factor in human vision and as one by which the direction of alignment of receptors in the living eye might be determined. But it is to Professor J. M. Enoch, editor and author of several major contributions to this volume, that we owe the first experimental demonstration (in 1961) of the wave-mode propa gation of light in vertebrate visual receptors, as well as the results of some thirty years devoted research concerned with all questions of receptor optics, particularly directional sensitivity and receptor alignment, both for normal vertebrate eyes and for pathologically modified eyes. His work on the latter has opened up a whole range of clinical possibilities.
Cell Biology by the Numbers
Author: Ron Milo
Publisher: Garland Science
ISBN: 1317230698
Category : Science
Languages : en
Pages : 399
Book Description
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
Publisher: Garland Science
ISBN: 1317230698
Category : Science
Languages : en
Pages : 399
Book Description
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
Animal Eyes
Author: Michael F. Land
Publisher: Oxford University Press
ISBN: 0199581134
Category : Science
Languages : en
Pages : 291
Book Description
This book covers the way that all known types of eyes work, from their optics to the behaviour they guide. The ways that eyes sample the world in space and time are considered, and the evolutionary origins of eyes are discussed. This new edition incorporates discoveries made since the first edition published in 2001.
Publisher: Oxford University Press
ISBN: 0199581134
Category : Science
Languages : en
Pages : 291
Book Description
This book covers the way that all known types of eyes work, from their optics to the behaviour they guide. The ways that eyes sample the world in space and time are considered, and the evolutionary origins of eyes are discussed. This new edition incorporates discoveries made since the first edition published in 2001.