Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors PDF Author: Maria Avramova
Publisher: Woodhead Publishing Series in
ISBN: 9780128149546
Category : Technology & Engineering
Languages : en
Pages : 300

Book Description
Verification, Validation and Uncertainty Quantification in Multi-Physics Modeling of Nuclear Reactors is a key reference for those tasked with ensuring the credibility and reliability of engineering models and simulations for the nuclear industry and nuclear energy research. Sections discuss simulation challenges and revise key definitions, concepts and terminology. Chapters cover solution verification, the frontier discipline of multi-physics coupling verification, model validation and its applications to single and multi-scale models, and uncertainty quantification. This essential guide will greatly assist engineers, scientists, regulators and students in applying rigorous verification, validation and uncertainty quantification methodologies to the M&S tools used in the industry. The book contains a strong focus on the verification and validation procedures required for the emerging multi-physics M&S tools that have great potential for use in the licensing of new reactors, as well as for power uprating and life extensions of operating reactors. Uniquely--and crucially for nuclear engineers--demonstrates the application of verification, validation and uncertainty methodologies to the modeling and simulation (M&S) of nuclear reactors Equips the reader to develop a rigorously defensible validation process irrespective of the particular M&S tool used Brings the audience up-to-speed on validation methods for traditional M&S tools Extends the discussion to the emerging area of validation of multi-physics and multi-scale nuclear reactor simulations

Improved Best Estimate Plus Uncertainty Methodology Including Advanced Validation Concepts to License Evolving Nuclear Reactors

Improved Best Estimate Plus Uncertainty Methodology Including Advanced Validation Concepts to License Evolving Nuclear Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M & S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost saving purposes by showing further testing wold not enhance the quality of the validation of predictive tools. The proposed methodology is at a conceptual level. When matured and if considered favorably by the stakeholders, it could serve as a new framework for the next generation of the best estimate plus uncertainty licensing methodology that USNRC developed previously. In order to come to that level of maturity it is necessary to communicate the methodology to scientific, design and regulatory stakeholders for discussion and debates. This paper is the first step to establish this communication.

Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3 PDF Author: H. Sezer Atamturktur
Publisher: Springer Science & Business Media
ISBN: 3319045520
Category : Technology & Engineering
Languages : en
Pages : 419

Book Description
This third volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data

Multi-Physics and Multi-Scale Modeling and Simulation Methods for Nuclear Reactor Application

Multi-Physics and Multi-Scale Modeling and Simulation Methods for Nuclear Reactor Application PDF Author: Xingjie Peng
Publisher: Frontiers Media SA
ISBN: 2832545378
Category : Technology & Engineering
Languages : en
Pages : 105

Book Description
A nuclear reactor operates in an environment where complex multi-physics and multi-scale phenomena exist, and it requires consideration of coupling among neutronics, thermal hydraulics, fuel performance, chemical dynamics, and coupling between the reactor core and first circuit. Safe, reliable, and economical operation can be achieved by leveraging high-fidelity numerical simulation, and proper considerations for coupling among different physics and required to provide powerful numerical simulation tools. In the past simplistic models for some of the physics phenomena are used, with the recent development of advanced numerical methods, software design, and high-performance computing power, the appeal of multi-physics and multi-scale modeling and simulation has been broadened.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling PDF Author: Yan Wang
Publisher: Woodhead Publishing
ISBN: 008102942X
Category : Technology & Engineering
Languages : en
Pages : 606

Book Description
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modeling Provides practical tools and examples for problem solving in modeling material behavior across various length scales Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

A Framework for Multi-physics Modeling, Design Optimization and Uncertainty Quantification of Fast Spectrum Liquid Fuel Molten Salt Reactors

A Framework for Multi-physics Modeling, Design Optimization and Uncertainty Quantification of Fast Spectrum Liquid Fuel Molten Salt Reactors PDF Author: Sandesh Bhaskar
Publisher:
ISBN:
Category :
Languages : en
Pages : 184

Book Description


Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis

Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis PDF Author: Chunyu Liu
Publisher: Springer Spektrum
ISBN: 9783658434212
Category : Science
Languages : en
Pages : 0

Book Description
In this book, the author provides a deep study into multiscale and multiphysics modeling of nuclear facilities, underscoring the critical role of uncertainty quantification and sensitivity analysis to ensure the confidence in the numerical results and to identify the system characteristics. Through an in-depth study of the liquid metal cooling system from the TALL-3D loop to the SMDFR core, the research highlights the natural circulation instability, strong coupling effects, perturbation tolerance, and system stability. The culmination of the research is the formulation of an optimized uncertainty-based control scheme, demonstrating its versatility beyond the nuclear domain to other energy sectors. This groundbreaking work not only advances the comprehension and utilization of coupling schemes and uncertainty methodologies in nuclear system modeling but also adeptly bridges the theoretical constructs with tangible application, positioning itself as an indispensable resource for design, safety analysis, and advanced numerical modeling in the broader energy sector.

Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3 PDF Author: Roland Platz
Publisher: Springer Nature
ISBN: 3031370031
Category : Technology & Engineering
Languages : en
Pages : 208

Book Description
Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Introduction of Uncertainty Quantification Uncertainty Quantification in Dynamics Model Form Uncertainty and Selection incl. Round Robin Challenge Sensor and Information Fusion Virtual Sensing, Certification, and Real-Time Monitoring Surrogate Modeling

Reactor Physics: Methods and Applications

Reactor Physics: Methods and Applications PDF Author: Tengfei Zhang
Publisher: Frontiers Media SA
ISBN: 2889764575
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description


Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors

Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors PDF Author: Francesco D'Auria
Publisher: Elsevier
ISBN: 0323856098
Category : Technology & Engineering
Languages : en
Pages : 818

Book Description
Handbook on Thermal Hydraulics of Water-Cooled Nuclear Reactors, Volume 3, Procedures and Applications includes all new chapters which delve deeper into the topic, adding context and practical examples to help readers apply learnings to their own setting. Topics covered include experimental thermal-hydraulics and instrumentation, numerics, scaling and containment in thermal-hydraulics, as well as a title dedicated to good practices in verification and validation. This book will be a valuable reference for graduate and undergraduate students of nuclear or thermal engineering, as well as researchers in nuclear thermal-hydraulics and reactor technology, engineers working in simulation and modeling of nuclear reactors, and more. In addition, nuclear operators, code developers and safety engineers will also benefit from the practical guidance provided. Presents a comprehensive analysis on the connection between nuclear power and thermal hydraulics Includes end-of-chapter questions, quizzes and exercises to confirm understanding and provides solutions in an appendix Covers applicable nuclear reactor safety considerations and design technology throughout