Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions PDF full book. Access full book title Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions by Yunpeng Guan. Download full books in PDF and EPUB format.

Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions

Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions PDF Author: Yunpeng Guan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Time-frequency methods are widely used tools to diagnose planetary gearbox fault under non-stationary conditions. However, the existing time-frequency methods still have some problems, such as smearing effect and cross-term interference, and these problems limit the effectiveness of the existing time-frequency methods in planetary gearbox fault diagnosis under non-stationary conditions. To address the aforementioned problems, four time-frequency methods are proposed in this thesis. As nowadays a large portion of the industrial equipment is equipped with tachometers, the first three methods are for the cases that the shaft rotational speed is easily accessible and the last method is for the cases of shaft rotational speed is not easily accessible. The proposed methods are itemized as follows: (1) The velocity synchronous short-time Fourier transform (VSSTFT), which is a type of linear transform based on the domain mappings and short-time Fourier transform to address the smear effect of the existing linear transforms under known time-varying speed conditions; (2) The velocity synchrosqueezing transform (VST), which is a type of remapping method based on the domain mapping and synchrosqueezing transform to address the smear effect of existing remapping methods under known time-varying speed conditions; (3) The velocity synchronous bilinear distribution (VSBD), which is a type of bilinear distribution based on the generalized demodulation and Cohen's class bilinear distribution to address the smear effect and cross-term interference of existing bilinear distributions under known time-varying speed conditions and (4) The velocity synchronous linear chirplet transform (VSLCT), which is a non-parametric combined approach of linear transform and concentration-index-guided parameter determination to provide a smear-free and cross-term-free TFR under unknown time-varying speed conditions. In this work, simple algorithms are developed to avoid the signal resampling process required by the domain mappings or demodulations of the first three methods (i.e., the VSSTFT, VST and VSBD). They are designed to have different resolutions, readabilities, noise tolerances and computational efficiencies. Therefore, they are capable to adapt different application conditions. The VSLCT, as a kind of linear transform, is designed for unknown rotational speed conditions. It utilizes a set of shaft-rotational-speed-synchronous bases to address the smear problem and it is capable to dynamically determine the signal processing parameters (i.e., window length and normalized angle) to provide a clear TFR with desirable time-frequency resolution in response to condition variations. All of the proposed methods in this work are smear-free and cross-term-free, the TFRs generated by the methods are clearer and more precise compared with the existing time-frequency methods. The faults of planetary gearboxes, if any, can be diagnosed by identifying the fault-induced components from the obtained TFRs. The four methods are all newly applied to fault diagnosis. The effectiveness of them has been validated using both simulated and experimental vibration signals of planetary gearboxes collected under non-stationary conditions.

Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions

Velocity Synchronous Approaches for Planetary Gearbox Fault Diagnosis Under Non-Stationary Conditions PDF Author: Yunpeng Guan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Time-frequency methods are widely used tools to diagnose planetary gearbox fault under non-stationary conditions. However, the existing time-frequency methods still have some problems, such as smearing effect and cross-term interference, and these problems limit the effectiveness of the existing time-frequency methods in planetary gearbox fault diagnosis under non-stationary conditions. To address the aforementioned problems, four time-frequency methods are proposed in this thesis. As nowadays a large portion of the industrial equipment is equipped with tachometers, the first three methods are for the cases that the shaft rotational speed is easily accessible and the last method is for the cases of shaft rotational speed is not easily accessible. The proposed methods are itemized as follows: (1) The velocity synchronous short-time Fourier transform (VSSTFT), which is a type of linear transform based on the domain mappings and short-time Fourier transform to address the smear effect of the existing linear transforms under known time-varying speed conditions; (2) The velocity synchrosqueezing transform (VST), which is a type of remapping method based on the domain mapping and synchrosqueezing transform to address the smear effect of existing remapping methods under known time-varying speed conditions; (3) The velocity synchronous bilinear distribution (VSBD), which is a type of bilinear distribution based on the generalized demodulation and Cohen's class bilinear distribution to address the smear effect and cross-term interference of existing bilinear distributions under known time-varying speed conditions and (4) The velocity synchronous linear chirplet transform (VSLCT), which is a non-parametric combined approach of linear transform and concentration-index-guided parameter determination to provide a smear-free and cross-term-free TFR under unknown time-varying speed conditions. In this work, simple algorithms are developed to avoid the signal resampling process required by the domain mappings or demodulations of the first three methods (i.e., the VSSTFT, VST and VSBD). They are designed to have different resolutions, readabilities, noise tolerances and computational efficiencies. Therefore, they are capable to adapt different application conditions. The VSLCT, as a kind of linear transform, is designed for unknown rotational speed conditions. It utilizes a set of shaft-rotational-speed-synchronous bases to address the smear problem and it is capable to dynamically determine the signal processing parameters (i.e., window length and normalized angle) to provide a clear TFR with desirable time-frequency resolution in response to condition variations. All of the proposed methods in this work are smear-free and cross-term-free, the TFRs generated by the methods are clearer and more precise compared with the existing time-frequency methods. The faults of planetary gearboxes, if any, can be diagnosed by identifying the fault-induced components from the obtained TFRs. The four methods are all newly applied to fault diagnosis. The effectiveness of them has been validated using both simulated and experimental vibration signals of planetary gearboxes collected under non-stationary conditions.

Advances in Condition Monitoring of Machinery in Non-Stationary Operations

Advances in Condition Monitoring of Machinery in Non-Stationary Operations PDF Author: Fakher Chaari
Publisher: Springer
ISBN: 3319204637
Category : Technology & Engineering
Languages : en
Pages : 483

Book Description
The book provides readers with a snapshot of recent research and technological trends in the field of condition monitoring of machinery working under a broad range of operating conditions. Each chapter, accepted after a rigorous peer-review process, reports on an original piece of work presented and discussed at the 4th International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO 2014, held on December 15-16, 2014, in Lyon, France. The contributions have been grouped into three different sections according to the main subfield (signal processing, data mining or condition monitoring techniques) they are related to. The book includes both theoretical developments as well as a number of industrial case studies, in different areas including, but not limited to: noise and vibration; vibro-acoustic diagnosis; signal processing techniques; diagnostic data analysis; instantaneous speed identification; monitoring and diagnostic systems; and dynamic and fault modeling. This book not only provides a valuable resource for both academics and professionals in the field of condition monitoring, it also aims at facilitating communication and collaboration between the two groups.

Algorithms for Fault Detection and Diagnosis

Algorithms for Fault Detection and Diagnosis PDF Author: Francesco Ferracuti
Publisher: MDPI
ISBN: 3036504621
Category : Technology & Engineering
Languages : en
Pages : 130

Book Description
Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions.

Proceedings of TEPEN 2022

Proceedings of TEPEN 2022 PDF Author: Hao Zhang
Publisher: Springer Nature
ISBN: 3031261933
Category : Technology & Engineering
Languages : en
Pages : 1156

Book Description
This volume gathers the latest advances, innovations and applications in the field of efficiency and performance engineering, as presented by leading international researchers and engineers at the 2022 conference of the Efficiency and Performance Engineering Network (TEPEN), held in Beijing and Baotou, China on August 18-21, 2022. Topics include vibro-acoustics monitoring, condition-based maintenance, sensing and instrumentation, machine health monitoring, maintenance auditing and organization, non-destructive testing, reliability, asset management, condition monitoring, life-cycle cost optimisation, prognostics and health management, maintenance performance measurement, manufacturing process monitoring, and robot-based monitoring and diagnostics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.

Advances in Condition Monitoring of Machinery in Non-Stationary Operations

Advances in Condition Monitoring of Machinery in Non-Stationary Operations PDF Author: Alfonso Fernandez Del Rincon
Publisher: Springer
ISBN: 3030112209
Category : Technology & Engineering
Languages : en
Pages : 423

Book Description
This book is aimed at researchers, industry professionals and students interested in the broad ranges of disciplines related to condition monitoring of machinery working in non-stationary conditions. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO’2018, held on June 20 – 22, 2018, in Santander, Spain. The book describes both theoretical developments and a number of industrial case studies, which cover different topics, such as: noise and vibrations in machinery, conditioning monitoring in non-stationary operations, vibro-acoustic diagnosis of machinery, signal processing, application of pattern recognition and data mining, monitoring and diagnostic systems, faults detection, dynamics of structures and machinery, and mechatronic machinery diagnostics.

Advances in Condition Monitoring of Machinery in Non-Stationary Operations

Advances in Condition Monitoring of Machinery in Non-Stationary Operations PDF Author: Anna Timofiejczuk
Publisher: Springer
ISBN: 3319619276
Category : Technology & Engineering
Languages : en
Pages : 366

Book Description
This book provides readers with a snapshot of recent methods for non-stationary vibration analysis of machinery. It covers a broad range of advanced techniques in condition monitoring of machinery, such as mathematical models, signal processing and pattern recognition methods and artificial intelligence methods, and their practical applications to the analysis of nonstationarities. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO’2016, held on September 12 – 16, 2016, in Gliwice, Poland. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. By presenting state-of-the-art in predictive maintenance solutions and discussing important industrial issues the book offers a valuable resource to both academics and professionals and is expected to facilitate communication and collaboration between the two groups.

Development of Effective Gearbox Fault Diagnosis Methodologies Utilising Various Levels of Prior Knowledge

Development of Effective Gearbox Fault Diagnosis Methodologies Utilising Various Levels of Prior Knowledge PDF Author: Stephan Schmidt
Publisher:
ISBN:
Category : Electric fault location
Languages : en
Pages : 0

Book Description
Effective fault diagnosis techniques are important to ensure that expensive assets such as wind turbines can operate reliably. Vibration condition monitoring data are rich with information pertaining to the dynamics of the rotating machines and are therefore popular for rotating machine diagnostics. However, vibration data do not only contain diagnostic information, but operating condition information as well. The performance of many conventional fault diagnosis techniques is impeded by inherent varying operating conditions encountered in machines such as wind turbines and draglines. Hence, it is not only important to utilise fault diagnosis techniques that are sensitive to faults, but the techniques should also be robust to changes in operating conditions. Much research has been conducted to address the many facets of gearbox fault diagnosis e.g. understanding the interactions of the components, the characteristics of the vibration signals and the development of good vibration analysis techniques. The aforementioned knowledge, as well as the availability of historical data, are regarded as prior knowledge (i.e. information that is available before inferring the condition of the machine) in this thesis. The available prior knowledge can be utilised to ensure that e ective gearbox fault diagnosis techniques are designed. Therefore, methodologies are proposed in this work which can utilise the available prior knowledge to e ectively perform fault diagnosis, i.e. detection, localisation and trending, under varying operating conditions. It is necessary to design di erent methodologies to accommodate the di erent kinds of historical data (e.g. healthy historical data or historical fault data) that can be encountered and the di erent signal analysis techniques that can be used. More speci cally, a methodology is developed to automatically detect localised gear damage under varying operating conditions without any historical data being available. The success of the methodology is attributed to the fact that the interaction between gear teeth in a similar condition results in data being generated which are statistically similar and this prior knowledge may be utilised. Therefore, a dissimilarity measure between the probability density functions of two teeth can be used to detect a gear tooth with localised gear damage. Three methodologies are also developed to utilise the available historical data from a healthy machine for gearbox fault diagnosis. Firstly, discrepancy analysis, a powerful novelty detection technique which has been used for gear diagnostics under varying operating conditions, is extended for bearing diagnostics under varying operating conditions. The suitability of time-frequency analysis techniques and di erent models are compared for discrepancy analysis as well. Secondly, a methodology is developed where the spectral coherence, a powerful second-order cyclostationary technique, is supplemented with healthy historical data for fault detection, localisation and trending. Lastly, a methodology is proposed which utilises narrowband feature extraction methods such as the kurtogram to extract a signal rich with novel information from a vibration signal. This is performed by attenuating the historical information in the signal. Sophisticated signal analysis techniques such as the squared envelope spectrum and the spectral coherence are also used on the novel signal to highlight the bene ts of utilising the novel signal as opposed to raw vibration signal for fault diagnosis. Even though a healthy state is the desired operating condition of rotating machines, fault data will become available during the operational life of the machine. Therefore, a methodology, centred around discrepancy analysis, is developed to utilise the available historical fault data and to accommodate fault data becoming available during the operation of the machine. In this investigation, it is recognised that the machine condition monitoring problem is in fact an open set recognition problem with continuous transitions between the healthy machine condition and the failure conditions. This is explicitly incorporated into the methodology and used to infer the condition of the gearbox in an open set recognition framework. This methodology uses a di erent approach to the conventional supervised machine learning techniques found in the literature. The methodologies are investigated on numerical and experimental datasets generated under varying operating conditions. The results indicate the bene ts of incorporating prior knowledge into the fault diagnosis process: the fault diagnosis techniques can be more robust to varying operating conditions, more sensitive to damage and easier to interpret by a non-expert. In summary, fault diagnosis techniques are more e ective when prior knowledge is utilised.

Smart Monitoring of Rotating Machinery for Industry 4.0

Smart Monitoring of Rotating Machinery for Industry 4.0 PDF Author: Fakher Chaari
Publisher: Springer Nature
ISBN: 3030795195
Category : Technology & Engineering
Languages : en
Pages : 177

Book Description
This book offers an overview of current methods for the intelligent monitoring of rotating machines. It describes the foundations of smart monitoring, guiding readers to develop appropriate machine learning and statistical models for answering important challenges, such as the management and analysis of a large volume of data. It also discusses real-world case studies, highlighting some practical issues and proposing solutions to them. The book offers extensive information on research trends, and innovative strategies to solve emerging, practical issues. It addresses both academics and professionals dealing with condition monitoring, and mechanical and production engineering issues, in the era of industry 4.0.

Dynamics-guided Vibration Signal Analysis for Fixed-axis Gearbox Fault Diagnosis

Dynamics-guided Vibration Signal Analysis for Fixed-axis Gearbox Fault Diagnosis PDF Author: Xingkai Yang
Publisher:
ISBN:
Category : Fault location (Engineering)
Languages : en
Pages : 0

Book Description
Gearboxes are key components commonly employed to transfer torque and power and adjust speed in mechatronic systems, such as wind turbines, automobiles, and mining machines. Due to the harsh working environment, various faults may occur in gearboxes. Tooth cracks account for a large proportion of gearbox faults. Detection and severity assessment of early tooth cracks is of vital significance to prevent gearbox failures since it enables efficient condition-based maintenance activities, which not only improves system reliability but also reduces operation and maintenance costs. Vibration analysis has been widely utilized for gear tooth crack detection and severity assessment. In industrial applications, gearboxes may work under either constant or time-varying operating conditions. Besides, gearboxes may suffer from either one single tooth crack or multiple tooth cracks depending on their working environment. All these factors render it challenging to get a good understanding of vibration characteristics of gearboxes with tooth cracks owing to their complexity, which undermines the effectiveness of vibration analysis for tooth crack detection and severity assessment. This thesis aims to procure some insights into vibration characteristics of fixed-axis spur gearboxes with tooth cracks through dynamic simulation, and the obtained insights are further adopted to guide the development of effective vibration signal analysis methods for tooth crack detection and severity assessment. To this end, the overarching objective of this thesis consists of four sub-objectives, which aim to address four issues related to tooth crack detection and severity assessment for fixed-axis spur gearboxes. Firstly, inspired by the observation that the Crack Induced Impulses (CII) contain more information on tooth crack growth, two novel condition indicators are developed by a proposed method which conducts a thorough analysis on the CII and are adopted for early tooth crack severity assessment. Secondly, to effectively track tooth crack severity progression under time-varying operating conditions, a comprehensive study on how time-varying operating conditions affect vibration signals of a fixed-axis spur gearbox with a tooth crack is conducted. A linear dependence of the Amplitude Modulation (AM) of the CII on the time-varying operating conditions is identified, through which a new condition indicator is proposed to track tooth crack severity progression under time-varying operating conditions. In addition, inspired by the finding that the AM of the CII is resulted from operating condition variations, a normalization method is proposed to remove the speed variation-induced AM of the CII and a normalized CII is obtained. The normalized CII preserve information on tooth crack growth and are free from gearbox speed fluctuations, which are used to track tooth crack severity progression under variable speed conditions. Lastly, insights into vibration characteristics of a fixed-axis spur gearbox with multiple tooth cracks are obtained using dynamic simulation and are further experimentally validated. Besides, inspired by the observation that the CII can well reflect tooth cracks, a method focusing on the CII is proposed to detect the number and locations of multiple tooth cracks in fixed-axis spur gearboxes. The research work conducted in this thesis enables us to procure a good understanding of vibration characteristics of fixed-axis spur gearboxes with tooth cracks working under both constant and time-varying operating conditions and provides effective vibration signal analysis methods for tooth crack detection and severity assessment of fixed-axis spur gearboxes. Future work will explore the effects of tooth lubrication and bearing faults on gearbox vibration characteristics.

Advances in Asset Management and Condition Monitoring

Advances in Asset Management and Condition Monitoring PDF Author: Andrew Ball
Publisher: Springer Nature
ISBN: 3030577457
Category : Technology & Engineering
Languages : en
Pages : 1566

Book Description
This book gathers select contributions from the 32nd International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2019), held at the University of Huddersfield, UK in September 2019, and jointly organized by the University of Huddersfield and COMADEM International. The aim of the Congress was to promote awareness of the rapidly emerging interdisciplinary areas of condition monitoring and diagnostic engineering management. The contents discuss the latest tools and techniques in the multidisciplinary field of performance monitoring, root cause failure modes analysis, failure diagnosis, prognosis, and proactive management of industrial systems. There is a special focus on digitally enabled asset management and covers several topics such as condition monitoring, maintenance, structural health monitoring, non-destructive testing and other allied areas. Bringing together expert contributions from academia and industry, this book will be a valuable resource for those interested in latest condition monitoring and asset management techniques.