Vector Fields on Singular Varieties PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Vector Fields on Singular Varieties PDF full book. Access full book title Vector Fields on Singular Varieties by Jean-Paul Brasselet. Download full books in PDF and EPUB format.

Vector Fields on Singular Varieties

Vector Fields on Singular Varieties PDF Author: Jean-Paul Brasselet
Publisher: Springer Science & Business Media
ISBN: 3642052045
Category : Mathematics
Languages : en
Pages : 242

Book Description
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

Vector Fields on Singular Varieties

Vector Fields on Singular Varieties PDF Author: Jean-Paul Brasselet
Publisher: Springer Science & Business Media
ISBN: 3642052045
Category : Mathematics
Languages : en
Pages : 242

Book Description
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields PDF Author: Freddy Dumortier
Publisher:
ISBN: 9783662191552
Category :
Languages : en
Pages : 240

Book Description


Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475

Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Geometry of Vector Fields

Geometry of Vector Fields PDF Author: Yu. Aminov
Publisher: CRC Press
ISBN: 9789056992019
Category : Mathematics
Languages : en
Pages : 190

Book Description
Presenting a classical approach to the foundations and development of the geometry of vector fields, this volume space, three orthogonal systems, and applications in mechanics. Other topics, including vector fields, Pfaff forms and systems in n-dimensional space, foliations and Godbillon-Vey invariant, are also considered. There is much interest in the study of geometrical objects in n-dimensional Euclidean space, and this volume provides a useful and comprehensive presentation.

Manifolds, Vector Fields, and Differential Forms

Manifolds, Vector Fields, and Differential Forms PDF Author: Gal Gross
Publisher: Springer Nature
ISBN: 3031254090
Category : Mathematics
Languages : en
Pages : 348

Book Description
This textbook serves as an introduction to modern differential geometry at a level accessible to advanced undergraduate and master's students. It places special emphasis on motivation and understanding, while developing a solid intuition for the more abstract concepts. In contrast to graduate level references, the text relies on a minimal set of prerequisites: a solid grounding in linear algebra and multivariable calculus, and ideally a course on ordinary differential equations. Manifolds are introduced intrinsically in terms of coordinate patches glued by transition functions. The theory is presented as a natural continuation of multivariable calculus; the role of point-set topology is kept to a minimum. Questions sprinkled throughout the text engage students in active learning, and encourage classroom participation. Answers to these questions are provided at the end of the book, thus making it ideal for independent study. Material is further reinforced with homework problems ranging from straightforward to challenging. The book contains more material than can be covered in a single semester, and detailed suggestions for instructors are provided in the Preface.

Conformal Vector Fields, Ricci Solitons and Related Topics

Conformal Vector Fields, Ricci Solitons and Related Topics PDF Author: Ramesh Sharma
Publisher: Springer Nature
ISBN: 9819992583
Category : Mathematics
Languages : en
Pages : 165

Book Description
This book provides an up-to-date introduction to the theory of manifolds, submanifolds, semi-Riemannian geometry and warped product geometry, and their applications in geometry and physics. It then explores the properties of conformal vector fields and conformal transformations, including their fixed points, essentiality and the Lichnerowicz conjecture. Later chapters focus on the study of conformal vector fields on special Riemannian and Lorentzian manifolds, with a special emphasis on general relativistic spacetimes and the evolution of conformal vector fields in terms of initial data. The book also delves into the realm of Ricci flow and Ricci solitons, starting with motivations and basic results and moving on to more advanced topics within the framework of Riemannian geometry. The main emphasis of the book is on the interplay between conformal vector fields and Ricci solitons, and their applications in contact geometry. The book highlights the fact that Nil-solitons and Sol-solitons naturally arise in the study of Ricci solitons in contact geometry. Finally, the book gives a comprehensive overview of generalized quasi-Einstein structures and Yamabe solitons and their roles in contact geometry. It would serve as a valuable resource for graduate students and researchers in mathematics and physics as well as those interested in the intersection of geometry and physics.

An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups

An Introduction To The Geometrical Analysis Of Vector Fields: With Applications To Maximum Principles And Lie Groups PDF Author: Stefano Biagi
Publisher: World Scientific
ISBN: 9813276630
Category : Mathematics
Languages : en
Pages : 450

Book Description
This book provides the reader with a gentle path through the multifaceted theory of vector fields, starting from the definitions and the basic properties of vector fields and flows, and ending with some of their countless applications, in the framework of what is nowadays called Geometrical Analysis. Once the background material is established, the applications mainly deal with the following meaningful settings:

Vector Fields and Other Vector Bundle Morphisms - A Singularity Approach

Vector Fields and Other Vector Bundle Morphisms - A Singularity Approach PDF Author: Ulrich Koschorke
Publisher: Springer
ISBN: 3540385460
Category : Mathematics
Languages : en
Pages : 309

Book Description
a

Vector Fields with Applications to Thermodynamics and Irreversibility

Vector Fields with Applications to Thermodynamics and Irreversibility PDF Author: Luis Manuel Braga da Costa Campos
Publisher: CRC Press
ISBN: 1000415988
Category : Mathematics
Languages : en
Pages : 279

Book Description
Vector Fields with Applications to Thermodynamics and Irreversibility is part of the series "Mathematics and Physics for Science and Technology", which combines rigorous mathematics with general physical principles to model practical engineering systems with a detailed derivation and interpretation of results. Volume V presents the mathematical theory of partial differential equations and methods of solution satisfying initial and boundary conditions, and includes applications to: acoustic, elastic, water, electromagnetic and other waves; the diffusion of heat, mass and electricity; and their interactions. This is the first book of the volume. The second book of volume V continues this book on thermodynamics, focusing on the equation of state and energy transfer processes including adiabatic, isothermal, isobaric and isochoric. These are applied to thermodynamic cycles, like the Carnot, Atkinson, Stirling and Barber-Brayton cycles, that are used in thermal devices, including refrigerators, heat pumps, and piston, jet and rocket engines. In connection with jet propulsion, adiabatic flows and normal and oblique shock waves in free space and nozzles with variable cross-section are considered. The equations of fluid mechanics are derived for compressible two-phase flow in the presence of shear and bulk viscosity, thermal conduction and mass diffusion. The thermodynamic cycles are illustrated by detailed calculations modelling the operation of piston, turbojet and rocket engines in various ambient conditions, ranging from sea level, the atmosphere of the earth at altitude and vacuum of space, for the propulsion of land, sea, air and space vehicles. The book is intended for graduate students and engineers working with mathematical models and can be applied to problems in mechanical, aerospace, electrical and other branches of engineering dealing with advanced technology, and also in the physical sciences and applied mathematics. This book: Simultaneously covers rigorous mathematics, general physical principles and engineering applications with practical interest Provides interpretation of results with the help of illustrations Includes detailed proofs of all results L.M.B.C. Campos was chair professor and the Coordinator of the Scientific Area of Applied and Aerospace Mechanics in the Department of Mechanical Engineering and also the director (and founder) of the Center for Aeronautical and Space Science and Technology until retirement in 2020. L.A.R.Vilela is currently completing an Integrated Master's degree in Aerospace Engineering at Institute Superior Tecnico (1ST) of Lisbon University.

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields PDF Author: Dana Schlomiuk
Publisher: Springer Science & Business Media
ISBN: 9780792323921
Category : Mathematics
Languages : en
Pages : 500

Book Description
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.