Author: Steven Tan
Publisher: Steven Tan
ISBN:
Category : Mathematics
Languages : en
Pages : 582
Book Description
An introduction to vector calculus with the aid of Mathematica® computer algebra system to represent them and to calculate with them. The unique features of the book, which set it apart from the existing textbooks, are the large number of illustrative examples. It is the author’s opinion a novice in science or engineering needs to see a lot of examples in which mathematics is used to be able to “speak the language.” All these examples and all illustrations can be replicated and used to learn and discover vector calculus in a new and exciting way. Reader can practice with the solutions, and then modify them to solve the particular problems assigned. This should move up problem solving skills and to use Mathematica® to visualize the results and to develop a deeper intuitive understanding. Usually, visualization provides much more insight than the formulas themselves. The second edition is an addition of the first. Two new chapters on line integrals, Green's Theorem, Stokes's Theorem and Gauss's Theorem have been added.
Vector Calculus Using Mathematica Second Edition
Author: Steven Tan
Publisher: Steven Tan
ISBN:
Category : Mathematics
Languages : en
Pages : 582
Book Description
An introduction to vector calculus with the aid of Mathematica® computer algebra system to represent them and to calculate with them. The unique features of the book, which set it apart from the existing textbooks, are the large number of illustrative examples. It is the author’s opinion a novice in science or engineering needs to see a lot of examples in which mathematics is used to be able to “speak the language.” All these examples and all illustrations can be replicated and used to learn and discover vector calculus in a new and exciting way. Reader can practice with the solutions, and then modify them to solve the particular problems assigned. This should move up problem solving skills and to use Mathematica® to visualize the results and to develop a deeper intuitive understanding. Usually, visualization provides much more insight than the formulas themselves. The second edition is an addition of the first. Two new chapters on line integrals, Green's Theorem, Stokes's Theorem and Gauss's Theorem have been added.
Publisher: Steven Tan
ISBN:
Category : Mathematics
Languages : en
Pages : 582
Book Description
An introduction to vector calculus with the aid of Mathematica® computer algebra system to represent them and to calculate with them. The unique features of the book, which set it apart from the existing textbooks, are the large number of illustrative examples. It is the author’s opinion a novice in science or engineering needs to see a lot of examples in which mathematics is used to be able to “speak the language.” All these examples and all illustrations can be replicated and used to learn and discover vector calculus in a new and exciting way. Reader can practice with the solutions, and then modify them to solve the particular problems assigned. This should move up problem solving skills and to use Mathematica® to visualize the results and to develop a deeper intuitive understanding. Usually, visualization provides much more insight than the formulas themselves. The second edition is an addition of the first. Two new chapters on line integrals, Green's Theorem, Stokes's Theorem and Gauss's Theorem have been added.
Multivariable Calculus and Mathematica®
Author: Kevin R. Coombes
Publisher: Springer Science & Business Media
ISBN: 1461216982
Category : Mathematics
Languages : en
Pages : 282
Book Description
Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.
Publisher: Springer Science & Business Media
ISBN: 1461216982
Category : Mathematics
Languages : en
Pages : 282
Book Description
Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.
Vector Calculus Using Mathematica
Author: Steven Tan
Publisher: Lulu.com
ISBN: 1387758624
Category :
Languages : en
Pages : 440
Book Description
Publisher: Lulu.com
ISBN: 1387758624
Category :
Languages : en
Pages : 440
Book Description
Calculus Using Mathematica
Author: K.D. Stroyan
Publisher: Academic Press
ISBN: 1483214346
Category : Mathematics
Languages : en
Pages : 366
Book Description
Calculus Using Mathematica: Scientific Projects and Mathematical Background is a companion to the core text, Calculus Using Mathematica. The book contains projects that illustrate applications of calculus to a variety of practical situations. The text consists of 14 chapters of various projects on how to apply the concepts and methodologies of calculus. Chapters are devoted to epidemiological applications; log and exponential functions in science; applications to mechanics, optics, economics, and ecology. Applications of linear differential equations; forced linear equations; differential equations from vector geometry; and to chemical reactions are presented as well. College students of calculus will find this book very helpful.
Publisher: Academic Press
ISBN: 1483214346
Category : Mathematics
Languages : en
Pages : 366
Book Description
Calculus Using Mathematica: Scientific Projects and Mathematical Background is a companion to the core text, Calculus Using Mathematica. The book contains projects that illustrate applications of calculus to a variety of practical situations. The text consists of 14 chapters of various projects on how to apply the concepts and methodologies of calculus. Chapters are devoted to epidemiological applications; log and exponential functions in science; applications to mechanics, optics, economics, and ecology. Applications of linear differential equations; forced linear equations; differential equations from vector geometry; and to chemical reactions are presented as well. College students of calculus will find this book very helpful.
Classical Mechanics with Mathematica®
Author: Antonio Romano
Publisher: Springer
ISBN: 3319775952
Category : Science
Languages : en
Pages : 644
Book Description
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.
Publisher: Springer
ISBN: 3319775952
Category : Science
Languages : en
Pages : 644
Book Description
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.
The Art of Modeling in Science and Engineering with Mathematica, Second Edition
Author: Diran Basmadjian
Publisher: CRC Press
ISBN: 9781584884606
Category : Mathematics
Languages : en
Pages : 536
Book Description
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica®, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson’s famous experiment to determine e/m and Euler’s model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.
Publisher: CRC Press
ISBN: 9781584884606
Category : Mathematics
Languages : en
Pages : 536
Book Description
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica®, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson’s famous experiment to determine e/m and Euler’s model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.
VisualDSolve
Author: Dan Schwalbe
Publisher: Springer
ISBN: 9781461274735
Category : Computers
Languages : en
Pages : 0
Book Description
This title presents new ideas on the visualization of differential equations with user-configurable tools. The authors use the widely-used computer algebra system, Mathematica, to provide an integrated environment for programming, visualizing graphics, and running commentary for learning and working with differential equations.
Publisher: Springer
ISBN: 9781461274735
Category : Computers
Languages : en
Pages : 0
Book Description
This title presents new ideas on the visualization of differential equations with user-configurable tools. The authors use the widely-used computer algebra system, Mathematica, to provide an integrated environment for programming, visualizing graphics, and running commentary for learning and working with differential equations.
An Illustrative Guide to Multivariable and Vector Calculus
Author: Stanley J. Miklavcic
Publisher: Springer Nature
ISBN: 3030334597
Category : Mathematics
Languages : en
Pages : 319
Book Description
This textbook focuses on one of the most valuable skills in multivariable and vector calculus: visualization. With over one hundred carefully drawn color images, students who have long struggled picturing, for example, level sets or vector fields will find these abstract concepts rendered with clarity and ingenuity. This illustrative approach to the material covered in standard multivariable and vector calculus textbooks will serve as a much-needed and highly useful companion. Emphasizing portability, this book is an ideal complement to other references in the area. It begins by exploring preliminary ideas such as vector algebra, sets, and coordinate systems, before moving into the core areas of multivariable differentiation and integration, and vector calculus. Sections on the chain rule for second derivatives, implicit functions, PDEs, and the method of least squares offer additional depth; ample illustrations are woven throughout. Mastery Checks engage students in material on the spot, while longer exercise sets at the end of each chapter reinforce techniques. An Illustrative Guide to Multivariable and Vector Calculus will appeal to multivariable and vector calculus students and instructors around the world who seek an accessible, visual approach to this subject. Higher-level students, called upon to apply these concepts across science and engineering, will also find this a valuable and concise resource.
Publisher: Springer Nature
ISBN: 3030334597
Category : Mathematics
Languages : en
Pages : 319
Book Description
This textbook focuses on one of the most valuable skills in multivariable and vector calculus: visualization. With over one hundred carefully drawn color images, students who have long struggled picturing, for example, level sets or vector fields will find these abstract concepts rendered with clarity and ingenuity. This illustrative approach to the material covered in standard multivariable and vector calculus textbooks will serve as a much-needed and highly useful companion. Emphasizing portability, this book is an ideal complement to other references in the area. It begins by exploring preliminary ideas such as vector algebra, sets, and coordinate systems, before moving into the core areas of multivariable differentiation and integration, and vector calculus. Sections on the chain rule for second derivatives, implicit functions, PDEs, and the method of least squares offer additional depth; ample illustrations are woven throughout. Mastery Checks engage students in material on the spot, while longer exercise sets at the end of each chapter reinforce techniques. An Illustrative Guide to Multivariable and Vector Calculus will appeal to multivariable and vector calculus students and instructors around the world who seek an accessible, visual approach to this subject. Higher-level students, called upon to apply these concepts across science and engineering, will also find this a valuable and concise resource.
Principles of Linear Algebra with Mathematica
Author: Kenneth M. Shiskowski
Publisher: John Wiley & Sons
ISBN: 1118627261
Category : Mathematics
Languages : en
Pages : 624
Book Description
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
Publisher: John Wiley & Sons
ISBN: 1118627261
Category : Mathematics
Languages : en
Pages : 624
Book Description
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
Mathematica Computer Manual to Accompany Advanced Engineering Mathematics, 8th Edition
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 346
Book Description
Aimed at the junior level courses in maths and engineering departments, this edition of the well known text covers many areas such as differential equations, linear algebra, complex analysis, numerical methods, probability, and more.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 346
Book Description
Aimed at the junior level courses in maths and engineering departments, this edition of the well known text covers many areas such as differential equations, linear algebra, complex analysis, numerical methods, probability, and more.