Variable Ordering Structures in Vector Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Variable Ordering Structures in Vector Optimization PDF full book. Access full book title Variable Ordering Structures in Vector Optimization by Gabriele Eichfelder. Download full books in PDF and EPUB format.

Variable Ordering Structures in Vector Optimization

Variable Ordering Structures in Vector Optimization PDF Author: Gabriele Eichfelder
Publisher: Springer Science & Business Media
ISBN: 3642542832
Category : Mathematics
Languages : en
Pages : 330

Book Description
This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice.

Variable Ordering Structures in Vector Optimization

Variable Ordering Structures in Vector Optimization PDF Author: Gabriele Eichfelder
Publisher: Springer Science & Business Media
ISBN: 3642542832
Category : Mathematics
Languages : en
Pages : 330

Book Description
This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice.

Recent Developments in Vector Optimization

Recent Developments in Vector Optimization PDF Author: Qamrul Hasan Ansari
Publisher: Springer Science & Business Media
ISBN: 3642211143
Category : Business & Economics
Languages : en
Pages : 568

Book Description
We always come cross several decision-making problems in our daily life. Such problems are always conflicting in which many different view points should be satisfied. In politics, business, industrial systems, management science, networks, etc. one often encounters such kind of problems. The most important and difficult part in such problems is the conflict between various objectives and goals. In these problems, one has to find the minimum(or maximum) for several objective functions. Such problems are called vector optimization problems (VOP),multi-criteria optimization problems or multi-objective optimization problems. This volume deals with several different topics / aspects of vector optimization theory ranging from the very beginning to the most recent one. It contains fourteen chapters written by different experts in the field of vector optimization.

Multiple Criteria Decision Analysis

Multiple Criteria Decision Analysis PDF Author: Salvatore Greco
Publisher: Springer
ISBN: 149393094X
Category : Business & Economics
Languages : en
Pages : 1356

Book Description
In two volumes, this new edition presents the state of the art in Multiple Criteria Decision Analysis (MCDA). Reflecting the explosive growth in the field seen during the last several years, the editors not only present surveys of the foundations of MCDA, but look as well at many new areas and new applications. Individual chapter authors are among the most prestigious names in MCDA research, and combined their chapters bring the field completely up to date. Part I of the book considers the history and current state of MCDA, with surveys that cover the early history of MCDA and an overview that discusses the “pre-theoretical” assumptions of MCDA. Part II then presents the foundations of MCDA, with individual chapters that provide a very exhaustive review of preference modeling, along with a chapter devoted to the axiomatic basis of the different models that multiple criteria preferences. Part III looks at outranking methods, with three chapters that consider the ELECTRE methods, PROMETHEE methods, and a look at the rich literature of other outranking methods. Part IV, on Multiattribute Utility and Value Theories (MAUT), presents chapters on the fundamentals of this approach, the very well known UTA methods, the Analytic Hierarchy Process (AHP) and its more recent extension, the Analytic Network Process (ANP), as well as a chapter on MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique). Part V looks at Non-Classical MCDA Approaches, with chapters on risk and uncertainty in MCDA, the decision rule approach to MCDA, the fuzzy integral approach, the verbal decision methods, and a tentative assessment of the role of fuzzy sets in decision analysis. Part VI, on Multiobjective Optimization, contains chapters on recent developments of vector and set optimization, the state of the art in continuous multiobjective programming, multiobjective combinatorial optimization, fuzzy multicriteria optimization, a review of the field of goal programming, interactive methods for solving multiobjective optimization problems, and relationships between MCDA and evolutionary multiobjective optimization (EMO). Part VII, on Applications, selects some of the most significant areas, including contributions of MCDA in finance, energy planning problems, telecommunication network planning and design, sustainable development, and portfolio analysis. Finally, Part VIII, on MCDM software, presents well known MCDA software packages.

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization PDF Author: Robin Purshouse
Publisher: Springer
ISBN: 364237140X
Category : Computers
Languages : en
Pages : 859

Book Description
This book constitutes the refereed proceedings of the 7th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2013 held in Sheffield, UK, in March 2013. The 57 revised full papers presented were carefully reviewed and selected from 98 submissions. The papers are grouped in topical sections on plenary talks; new horizons; indicator-based methods; aspects of algorithm design; pareto-based methods; hybrid MCDA; decomposition-based methods; classical MCDA; exploratory problem analysis; product and process applications; aerospace and automotive applications; further real-world applications; and under-explored challenges.

Order Analysis, Deep Learning, and Connections to Optimization

Order Analysis, Deep Learning, and Connections to Optimization PDF Author: Johannes Jahn
Publisher: Springer Nature
ISBN: 3031674227
Category :
Languages : en
Pages : 189

Book Description


Vector Optimization

Vector Optimization PDF Author: Guang-ya Chen
Publisher: Springer Science & Business Media
ISBN: 3540284451
Category : Business & Economics
Languages : en
Pages : 315

Book Description
Vector optimization model has found many important applications in decision making problems such as those in economics theory, management science, and engineering design (since the introduction of the Pareto optimal solu tion in 1896). Typical examples of vector optimization model include maxi mization/minimization of the objective pairs (time, cost), (benefit, cost), and (mean, variance) etc. Many practical equilibrium problems can be formulated as variational in equality problems, rather than optimization problems, unless further assump tions are imposed. The vector variational inequality was introduced by Gi- nessi (1980). Extensive research on its relations with vector optimization, the existence of a solution and duality theory has been pursued. The fundamental idea of the Ekeland's variational principle is to assign an optimization problem a slightly perturbed one having a unique solution which is at the same time an approximate solution of the original problem. This principle has been an important tool for nonlinear analysis and optimization theory. Along with the development of vector optimization and set-valued optimization, the vector variational principle introduced by Nemeth (1980) has been an interesting topic in the last decade. Fan Ky's minimax theorems and minimax inequalities for real-valued func tions have played a key role in optimization theory, game theory and math ematical economics. An extension was proposed to vector payoffs was intro duced by Blackwell (1955).

Variational Methods in Partially Ordered Spaces

Variational Methods in Partially Ordered Spaces PDF Author: Alfred Göpfert
Publisher: Springer Nature
ISBN: 3031365348
Category : Business & Economics
Languages : en
Pages : 576

Book Description
This book discusses basic tools of partially ordered spaces and applies them to variational methods in Nonlinear Analysis and for optimizing problems. This book is aimed at graduate students and research mathematicians.

Variational Analysis and Set Optimization

Variational Analysis and Set Optimization PDF Author: Akhtar A. Khan
Publisher: CRC Press
ISBN: 1351712063
Category : Business & Economics
Languages : en
Pages : 244

Book Description
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.

Set-valued Optimization

Set-valued Optimization PDF Author: Akhtar A. Khan
Publisher: Springer
ISBN: 3642542654
Category : Mathematics
Languages : en
Pages : 781

Book Description
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.

Mathematics Without Boundaries

Mathematics Without Boundaries PDF Author: Panos M. Pardalos
Publisher: Springer
ISBN: 1493911244
Category : Mathematics
Languages : en
Pages : 648

Book Description
This volume consists of chapters written by eminent scientists and engineers from the international community and present significant advances in several theories, methods and applications of an interdisciplinary research. These contributions focus on both old and recent developments of Global Optimization Theory, Convex Analysis, Calculus of Variations, Discrete Mathematics and Geometry, as well as several applications to a large variety of concrete problems, including applications of computers to the study of smoothness and analyticity of functions, applications to epidemiological diffusion, networks, mathematical models of elastic and piezoelectric fields, optimal algorithms, stability of neutral type vector functional differential equations, sampling and rational interpolation for non-band-limited signals, recurrent neural network for convex optimization problems and experimental design. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical and Engineering subjects and especially to graduate students who search for the latest information.