Vanadium Pentoxide Thin Film and Its Characterization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Vanadium Pentoxide Thin Film and Its Characterization PDF full book. Access full book title Vanadium Pentoxide Thin Film and Its Characterization by Bhanu Priya. Download full books in PDF and EPUB format.

Vanadium Pentoxide Thin Film and Its Characterization

Vanadium Pentoxide Thin Film and Its Characterization PDF Author: Bhanu Priya
Publisher: Mohammed Abdul Sattar
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Semiconducting materials have been around since the early 19th century, when Michael Faraday discovered that, unlike pure metals, the electrical resistance in silver sulphide decreased as the temperature of the material was raised. From a more practical perspective, a semiconductor is a substance with electrical conductivity between that of an insulator and a metal, as the name suggests. There is a plethora of non- conducting features of semiconductors that have led to their uses in a wide variety of applications. After the development of the transistor device, silicon (Si) has become the most well-known semiconductor in the world. Without a doubt, the advent of the transistor in the 20th century was the single most important scientific event of the last two centuries, paving the way for the rapid development of technology in our modern world. In the last few decades, Transition Metal Oxide Semiconductors (TMOS) are a class of materials that have attracted significant attention in the field of electronics and optoelectronics due to their unique properties. These materials are composed of transition metal cations and oxygen anions, and can exhibit a wide range of electronic and optical behaviors, including band gap tuning, carrier density modulation, and photoresponse enhancement. TMOS are especially promising for applications such as solar cells, gas sensors, and electronic devices, due to their high carrier mobility, chemical stability, and abundance of raw materials. The diverse range of properties exhibited by TMOS makes them a promising avenue for developing new and advanced technologies in the field of materials science.

Vanadium Pentoxide Thin Film and Its Characterization

Vanadium Pentoxide Thin Film and Its Characterization PDF Author: Bhanu Priya
Publisher: Mohammed Abdul Sattar
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Semiconducting materials have been around since the early 19th century, when Michael Faraday discovered that, unlike pure metals, the electrical resistance in silver sulphide decreased as the temperature of the material was raised. From a more practical perspective, a semiconductor is a substance with electrical conductivity between that of an insulator and a metal, as the name suggests. There is a plethora of non- conducting features of semiconductors that have led to their uses in a wide variety of applications. After the development of the transistor device, silicon (Si) has become the most well-known semiconductor in the world. Without a doubt, the advent of the transistor in the 20th century was the single most important scientific event of the last two centuries, paving the way for the rapid development of technology in our modern world. In the last few decades, Transition Metal Oxide Semiconductors (TMOS) are a class of materials that have attracted significant attention in the field of electronics and optoelectronics due to their unique properties. These materials are composed of transition metal cations and oxygen anions, and can exhibit a wide range of electronic and optical behaviors, including band gap tuning, carrier density modulation, and photoresponse enhancement. TMOS are especially promising for applications such as solar cells, gas sensors, and electronic devices, due to their high carrier mobility, chemical stability, and abundance of raw materials. The diverse range of properties exhibited by TMOS makes them a promising avenue for developing new and advanced technologies in the field of materials science.

Structural Characterization of Amorpheus Vanadium Pentoxide Thin Films Prepared by Chemical Vapour Deposition

Structural Characterization of Amorpheus Vanadium Pentoxide Thin Films Prepared by Chemical Vapour Deposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Solid Phase Crystallization of Vanadium Dioxide Thin Films and Characterization Through Scanning Electron Microscopy

Solid Phase Crystallization of Vanadium Dioxide Thin Films and Characterization Through Scanning Electron Microscopy PDF Author: Felipe Rivera
Publisher:
ISBN:
Category : Crystallization
Languages : en
Pages : 95

Book Description
Crystalline films of vanadium dioxide were obtained through thermal annealing of amorphous vanadium dioxide thin films sputtered on silicon dioxide. An annealing process was found that yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. Orientation Imaging Microscopy (OIM) was used to characterize and study the phase and the orientation of the vanadium dioxide crystals obtained, as well as to differentiate them from other vanadium oxide stoichiometries that may have formed during the annealing process. There was no evidence of any other vanadium oxides present in the prepared samples. Indexing of the crystals for the orientation study was performed with the Kikuchi patterns for the tetragonal phase of vanadium dioxide, since it was observed that the Kikuchi patterns for the monoclinic and tetragonal phases of vanadium dioxide are indistinguishable by OIM. It was found that a particle size of 100 nm was in the lower limit of particles that could be reliably characterized with this technique. It was also found that all VO2 crystals large enough to be indexed by OIM had a preferred orientation with the C axis of the tetragonal phase parallel to the plane of the specimen.

Electrochromic Properties of Vanadium Pentoxide Nanostructured Thin Films

Electrochromic Properties of Vanadium Pentoxide Nanostructured Thin Films PDF Author: Afaf Almoabadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Book Description
ABSTRACT Electrochromic Properties of Vanadium Pentoxide Nanostructured Thin Films Afaf Almoabadi The focus of this work is the improvement of the electrochromic properties of vanadium pentoxide thin films in order to expand its use. Indeed, because of its rather poor electrochromic properties, until now, vanadium pentoxide has only been used as a storage material in an electrochromic device, in conjunction with tungsten oxide, molybdenum oxide etc. To this purpose, vanadium pentoxide thin films were prepared under different conditions and characterized by using optical and electrochemical methods. Films were deposited on indium tin oxide (ITO) substrates by dip-coating at both room- and sub-zero temperature (-100C) and porosity in the sol-gel prepared vanadium pentoxide film was created by using templating methods. The morphology, optical and electrochromic properties of the macro- and mesoporous films, prepared in the presence of structure-directing agents such as polystyrene microspheres and triblock copolymer, have been compared with those of dense films. By using various methods to remove the template material, it was shown that the morphology of the vanadium pentoxide film can be controlled and new nanostructures can be created. The transformation of the lamellar into a nanorod structure, observed when the film is heated at 425-500◦C for several hours, resulted in the development of an elegant method for the synthesis of vanadium oxide nanostructures. The electrochromic performance of the nanorods prepared through the thermal treatment was found to be superior to that of the vanadium pentoxide with the layered structure, especially in the near-infrared region, demonstrating their potential for electrochromic applications. The structure, morphology, optical and electrochromic properties of dense and porous vanadium oxide films, coated at low temperature were also determined and compared to those of the corresponding films, deposited under room-temperature conditions. The results indicated that in the films coated at -100C, a residual compressive stress exists that originates from a non-uniformity in depth of the film, most probably, due to the formation of micro voids during the deposition. The micro voids are preserved during the heat-treatment of the films. The "micro void" morphology was found to account for the considerably improved electrochromic properties of the sub-zero dip-coated films. Low-temperature coated films, heated at 4500C for several hours, undergo the transformation from a layered to a highly uniform nanorod structure with important potential optoelectronic applications. The overall aim of this work is thus to evaluate how the morphology of vanadium pentoxide thin films is instrumental in obtaining a material with a high lithium ion intercalation capacity. With an appropriate morphology, the performance of vanadium oxide as electrochromic material and as cathode in lithium ion batteries can be improved significantly. For this purpose, both layered (dense and porous) and nanorod films were prepared and characterized. Scanning electron microscopy, cyclic voltammetry and electrical impedance spectroscopy measurements were used for the characterization of the different V2O5 films.

Vanadium and Molybdenum Oxide Thin Films on Au(111)

Vanadium and Molybdenum Oxide Thin Films on Au(111) PDF Author: Sebastien Guimond
Publisher:
ISBN:
Category :
Languages : en
Pages : 123

Book Description


Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles

Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles PDF Author: Felipe Rivera
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 222

Book Description
Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x, x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) layer. Scanning electron microscopy (SEM) and electron-backscattered diffraction (EBSD) were utilized to study the morphology of the solid phase crystallization that resulted from this post-deposition annealing process. The annealing parameters ranged in temperature from 300°C up to 1000°C and in time from 5 minutes up to 12 hours. Depending on the annealing parameters, EBSD showed that this process yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. In addition to these films on SiO_2, other VO_2 thin films were deposited onto a-, c-, and r-cuts of sapphire and on TiO_2(001) heated single-crystal substrates by pulsed-laser deposition (PLD). The temperature of the substrates was kept at ~500°C during deposition. EBSD maps and orientation imaging microscopy were used to study the epitaxy and orientation of the VO_2 grains deposited on the single crystal substrates, as well as on the amorphous SiO_2 layer. The EBSD/OIM results showed that: 1) For all the sapphire substrates analyzed, there is a predominant family of crystallographic relationships wherein the rutile VO_2{001} planes tend to lie parallel to the sapphire's {10-10} and the rutile VO_2{100} planes lie parallel to the sapphire's {1-210} and {0001}. Furthermore, while this family of relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.

Thin Film Metal-Oxides

Thin Film Metal-Oxides PDF Author: Shriram Ramanathan
Publisher: Springer Science & Business Media
ISBN: 1441906649
Category : Technology & Engineering
Languages : en
Pages : 344

Book Description
Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.

Growth and Characterization of Ultra Thin Vanadium Oxide Films

Growth and Characterization of Ultra Thin Vanadium Oxide Films PDF Author: Fangfang Song
Publisher:
ISBN: 9781321572339
Category : Electronic books
Languages : en
Pages : 262

Book Description


Modern Technologies for Creating the Thin-film Systems and Coatings

Modern Technologies for Creating the Thin-film Systems and Coatings PDF Author: Nikolay Nikitenkov
Publisher: BoD – Books on Demand
ISBN: 953513003X
Category : Science
Languages : en
Pages : 446

Book Description
Development of the thin film and coating technologies (TFCT) made possible the technological revolution in electronics and through it the revolution in IT and communications in the end of the twentieth century. Now, TFCT penetrated in many sectors of human life and industry: biology and medicine; nuclear, fusion, and hydrogen energy; protection against corrosion and hydrogen embrittlement; jet engine; space materials science; and many others. Currently, TFCT along with nanotechnologies is the most promising for the development of almost all industries. The 20 chapters of this book present the achievements of thin-film technology in many areas mentioned above but more than any other in medicine and biology and energy saving and energy efficiency.

Vanadium Based Mixedoxide Thin Films: Electrochromic Behavior and Electrochemical Characterization

Vanadium Based Mixedoxide Thin Films: Electrochromic Behavior and Electrochemical Characterization PDF Author: Florinda Artuso
Publisher:
ISBN:
Category :
Languages : en
Pages : 115

Book Description