Author: V. Grasso
Publisher: Springer Science & Business Media
ISBN: 9400945426
Category : Science
Languages : en
Pages : 526
Book Description
This new volume in the series Physics and Chemistry of Materials with Layered Structures satisfies the need for a comprehensive review of the progress made in the decade 1972-1982 in the field of the electronic properties of layer compounds. Some recent theoretical and experimental developments are highlighted by authori tative physicists active in current research. The previous books of this series covering similar topics are volumes 3 and 4. The present review is mainly intended to fulfill the gap up to 1982 and part of 1983. I am indebted to all the authors for their friendly co-operation and continuous effort in preparing the contributions in their own fields of competence. I am sure that both the expertise scientists and the beginners in the field of the electronic properties of layered materials will find this book a valuable tool for their research work. Warm thanks are due to Prof. E. Mooser, General Editor of the series, for his constant and authoritative advice. * * * This book has been conceived as a tribute to Prof. Franco Bassani to whom the Italian tradition in the field of layer compounds, as well as in other fields of solid state physics, owes much. The authors of this review have all benefited at some time of their professional life from close cooperation with him. Istituto di Struttura della Materia, VINCENZO GRASSO Universitd di Messina IX V Grasso (ed.). Electronic Structure and Electronic Transitions in Layered Materials. ix.
Electronic Structure and Electronic Transitions in Layered Materials
Author: V. Grasso
Publisher: Springer Science & Business Media
ISBN: 9400945426
Category : Science
Languages : en
Pages : 526
Book Description
This new volume in the series Physics and Chemistry of Materials with Layered Structures satisfies the need for a comprehensive review of the progress made in the decade 1972-1982 in the field of the electronic properties of layer compounds. Some recent theoretical and experimental developments are highlighted by authori tative physicists active in current research. The previous books of this series covering similar topics are volumes 3 and 4. The present review is mainly intended to fulfill the gap up to 1982 and part of 1983. I am indebted to all the authors for their friendly co-operation and continuous effort in preparing the contributions in their own fields of competence. I am sure that both the expertise scientists and the beginners in the field of the electronic properties of layered materials will find this book a valuable tool for their research work. Warm thanks are due to Prof. E. Mooser, General Editor of the series, for his constant and authoritative advice. * * * This book has been conceived as a tribute to Prof. Franco Bassani to whom the Italian tradition in the field of layer compounds, as well as in other fields of solid state physics, owes much. The authors of this review have all benefited at some time of their professional life from close cooperation with him. Istituto di Struttura della Materia, VINCENZO GRASSO Universitd di Messina IX V Grasso (ed.). Electronic Structure and Electronic Transitions in Layered Materials. ix.
Publisher: Springer Science & Business Media
ISBN: 9400945426
Category : Science
Languages : en
Pages : 526
Book Description
This new volume in the series Physics and Chemistry of Materials with Layered Structures satisfies the need for a comprehensive review of the progress made in the decade 1972-1982 in the field of the electronic properties of layer compounds. Some recent theoretical and experimental developments are highlighted by authori tative physicists active in current research. The previous books of this series covering similar topics are volumes 3 and 4. The present review is mainly intended to fulfill the gap up to 1982 and part of 1983. I am indebted to all the authors for their friendly co-operation and continuous effort in preparing the contributions in their own fields of competence. I am sure that both the expertise scientists and the beginners in the field of the electronic properties of layered materials will find this book a valuable tool for their research work. Warm thanks are due to Prof. E. Mooser, General Editor of the series, for his constant and authoritative advice. * * * This book has been conceived as a tribute to Prof. Franco Bassani to whom the Italian tradition in the field of layer compounds, as well as in other fields of solid state physics, owes much. The authors of this review have all benefited at some time of their professional life from close cooperation with him. Istituto di Struttura della Materia, VINCENZO GRASSO Universitd di Messina IX V Grasso (ed.). Electronic Structure and Electronic Transitions in Layered Materials. ix.
Intercalation in Layered Materials
Author: M.S. Dresselhaus
Publisher: Springer
ISBN: 1475755562
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc tion to the field for potential new participants, an in-depth and broad exposure for stu dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials and with various intercalants, and an elaboration of the complementarity of intercalated layered materials with deliberately structured superlattices.
Publisher: Springer
ISBN: 1475755562
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc tion to the field for potential new participants, an in-depth and broad exposure for stu dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials and with various intercalants, and an elaboration of the complementarity of intercalated layered materials with deliberately structured superlattices.
Surface Science of Photocatalysis
Author: Jiaguo Yu
Publisher: Academic Press
ISBN: 0081028903
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field.
Publisher: Academic Press
ISBN: 0081028903
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field.
Preparation and Crystal Growth of Materials with Layered Structures
Author: R.M.A. Lieth
Publisher: Springer Science & Business Media
ISBN: 9401727503
Category : Science
Languages : en
Pages : 285
Book Description
The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.
Publisher: Springer Science & Business Media
ISBN: 9401727503
Category : Science
Languages : en
Pages : 285
Book Description
The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.
2D Monoelemental Materials (Xenes) and Related Technologies
Author: Zongyu Huang
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166
Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166
Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Graphite Intercalation Compounds and Applications
Author: Toshiaki Enoki
Publisher: Oxford University Press
ISBN: 0195351843
Category : Science
Languages : en
Pages : 453
Book Description
Graphite intercalation compounds are a new class of electronic materials that are classified as graphite-based host guest systems. They have specific structural features based on the alternating stacking of graphite and guest intercalate sheets. The electronic structures show two-dimensional metallic properties with a large variety of features including superconductivity. They are also interesting from the point of two-dimensional magnetic systems. This book presents the synthesis, crystal structures, phase transitions, lattice dynamics, electronic structures, electron transport properties, magnetic properties, surface phenomena, and applications of graphite intercalation compounds. The applications covered include batteries, highly conductive graphite fibers, exfoliated graphite and intercalated fullerenes and nanotubes.
Publisher: Oxford University Press
ISBN: 0195351843
Category : Science
Languages : en
Pages : 453
Book Description
Graphite intercalation compounds are a new class of electronic materials that are classified as graphite-based host guest systems. They have specific structural features based on the alternating stacking of graphite and guest intercalate sheets. The electronic structures show two-dimensional metallic properties with a large variety of features including superconductivity. They are also interesting from the point of two-dimensional magnetic systems. This book presents the synthesis, crystal structures, phase transitions, lattice dynamics, electronic structures, electron transport properties, magnetic properties, surface phenomena, and applications of graphite intercalation compounds. The applications covered include batteries, highly conductive graphite fibers, exfoliated graphite and intercalated fullerenes and nanotubes.
Crystalline Electric Field and Structural Effects in f-Electron Systems
Author: Jack E. Crow
Publisher: Springer Science & Business Media
ISBN: 1461331080
Category : Science
Languages : en
Pages : 618
Book Description
Perhaps the title of this conference "Ctystalline Electric Field and Structural Effects in f-Electron Systems" reflects best the growth and direction of the field. The title and the conference itself go beyond "CEF" in two broad and important respects. First, the inter-relations between CEF and mode softenings, distortions due to quadruplar ordering or the Jahn Teller effect, have gained greater focus, hence the inclusion of . •• "Structral Effects. " Second, much greater emphasis on the actinides and, in particular, comparisons between actinides and the lighter rare earths is seen in this conference, hence the more general terminology . . . Iff-Electron Systems. " It seems clear that this comparison will lead to an extension to the actinides of mixed valence and Kondo considerations, as well as CEF effects. The emergence of a broader discipline which includes all f-electron systems and which is concerned with unstable, as well as stable, valence reflects the maturation of the field and a coming to grips with the complexity, as well as the unity, of f-electron systems. This maturation is also seen in the growing realization of the effects of CEF on transport, thermodynamic properties, and superconductivity and its co-existence with magnetic order. This volume contains 63 articles, all but two of which were presented at the Conference held in Philadelphia, U. S. A. , on 12-15 November, 1979. About 100 conferees from 13 countries attended the meeting which consisted of four full days of lecture presentations.
Publisher: Springer Science & Business Media
ISBN: 1461331080
Category : Science
Languages : en
Pages : 618
Book Description
Perhaps the title of this conference "Ctystalline Electric Field and Structural Effects in f-Electron Systems" reflects best the growth and direction of the field. The title and the conference itself go beyond "CEF" in two broad and important respects. First, the inter-relations between CEF and mode softenings, distortions due to quadruplar ordering or the Jahn Teller effect, have gained greater focus, hence the inclusion of . •• "Structral Effects. " Second, much greater emphasis on the actinides and, in particular, comparisons between actinides and the lighter rare earths is seen in this conference, hence the more general terminology . . . Iff-Electron Systems. " It seems clear that this comparison will lead to an extension to the actinides of mixed valence and Kondo considerations, as well as CEF effects. The emergence of a broader discipline which includes all f-electron systems and which is concerned with unstable, as well as stable, valence reflects the maturation of the field and a coming to grips with the complexity, as well as the unity, of f-electron systems. This maturation is also seen in the growing realization of the effects of CEF on transport, thermodynamic properties, and superconductivity and its co-existence with magnetic order. This volume contains 63 articles, all but two of which were presented at the Conference held in Philadelphia, U. S. A. , on 12-15 November, 1979. About 100 conferees from 13 countries attended the meeting which consisted of four full days of lecture presentations.
2D Metal Carbides and Nitrides (MXenes)
Author: Babak Anasori
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 530
Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 530
Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.
Structural Phase Transitions in Layered Transition Metal Compounds
Author: K. Motizuki
Publisher: Springer Science & Business Media
ISBN: 9400945760
Category : Science
Languages : en
Pages : 309
Book Description
The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.
Publisher: Springer Science & Business Media
ISBN: 9400945760
Category : Science
Languages : en
Pages : 309
Book Description
The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.
Intercalated Layered Materials
Author: F.A. Lévy
Publisher: Springer Science & Business Media
ISBN: 940099415X
Category : Science
Languages : en
Pages : 580
Book Description
Materials with layered structures remain an extensively investigated subject in current physics and chemistry. Most of the promising technological applications however deal with intercalation compounds of layered materials. Graphite intercalation compounds have now been known for a long time. Intercalation in transition metal dichalcogenides, on the other hand, has been investigated only recently. The amount of information on intercalated layered materials has increased far beyond the original concept for this volume in the series Physics and Chemistry of Materials with Layered Structures. The large size of this volume also indicates how important this field of research will be, not only in basic science, but also in industrial and energy applications. In this volume, two classes of materials are included, generally investigated by different scientists. Graphite intercalates and intercalates of other inorganic com pounds actually constitute separate classes of materials. However, the similarity between the intercalation techniques and some intercalation processes does not justify this separation, and accounts for the inclusion of both classes in this volume. The first part of the volume deals with intercalation processes and intercalates of transition metal dichalcogenides. Several chapters include connected topics necessary to give a good introduction or comprehensive review of these types of materials. Organic as well as inorganic intercalation compounds are treated. The second part includes contributions concerning graphite intercalates. It should be noted that graphite intercalation compounds have already been mentioned in Volumes I and V.
Publisher: Springer Science & Business Media
ISBN: 940099415X
Category : Science
Languages : en
Pages : 580
Book Description
Materials with layered structures remain an extensively investigated subject in current physics and chemistry. Most of the promising technological applications however deal with intercalation compounds of layered materials. Graphite intercalation compounds have now been known for a long time. Intercalation in transition metal dichalcogenides, on the other hand, has been investigated only recently. The amount of information on intercalated layered materials has increased far beyond the original concept for this volume in the series Physics and Chemistry of Materials with Layered Structures. The large size of this volume also indicates how important this field of research will be, not only in basic science, but also in industrial and energy applications. In this volume, two classes of materials are included, generally investigated by different scientists. Graphite intercalates and intercalates of other inorganic com pounds actually constitute separate classes of materials. However, the similarity between the intercalation techniques and some intercalation processes does not justify this separation, and accounts for the inclusion of both classes in this volume. The first part of the volume deals with intercalation processes and intercalates of transition metal dichalcogenides. Several chapters include connected topics necessary to give a good introduction or comprehensive review of these types of materials. Organic as well as inorganic intercalation compounds are treated. The second part includes contributions concerning graphite intercalates. It should be noted that graphite intercalation compounds have already been mentioned in Volumes I and V.