Author: William Cherry
Publisher: American Mathematical Soc.
ISBN: 0821829807
Category : Mathematics
Languages : en
Pages : 146
Book Description
This volume contains six detailed papers written by participants of the special session on value distribution theory and complex dynamics held in Hong Kong at the First Joint International Meeting of the AMS and the Hong Kong Mathematical Society in December 2000. It demonstrates the strong interconnections between the two fields and introduces recent progress of leading researchers from Asia. In the book, W. Bergweiler discusses proper analytic maps with one critical point andgeneralizes a previous result concerning Leau domains. W. Cherry and J. Wang discuss non-Archimedean analogs of Picard's theorems. P.-C. Hu and C.-C. Yang give a survey of results in non-Archimedean value distribution theory related to unique range sets, the $abc$-conjecture, and Shiffman's conjecture.L. Keen and J. Kotus explore the dynamics of the family of $f \lambda(z)=\lambda\tan(z)$ and show that it has much in common with the dynamics of the familiar quadratic family $f c(z)=z2+c$. R. Oudkerk discusses the interesting phenomenon known as parabolic implosion and, in particular, shows the persistence of Fatou coordinates under perturbation. Finally, M. Taniguchi discusses deformation spaces of entire functions and their combinatorial structure of singularities of the functions. The bookis intended for graduate students and research mathematicians interested in complex dynamics, function theory, and non-Archimedean function theory.
Value Distribution Theory and Complex Dynamics
Author: William Cherry
Publisher: American Mathematical Soc.
ISBN: 0821829807
Category : Mathematics
Languages : en
Pages : 146
Book Description
This volume contains six detailed papers written by participants of the special session on value distribution theory and complex dynamics held in Hong Kong at the First Joint International Meeting of the AMS and the Hong Kong Mathematical Society in December 2000. It demonstrates the strong interconnections between the two fields and introduces recent progress of leading researchers from Asia. In the book, W. Bergweiler discusses proper analytic maps with one critical point andgeneralizes a previous result concerning Leau domains. W. Cherry and J. Wang discuss non-Archimedean analogs of Picard's theorems. P.-C. Hu and C.-C. Yang give a survey of results in non-Archimedean value distribution theory related to unique range sets, the $abc$-conjecture, and Shiffman's conjecture.L. Keen and J. Kotus explore the dynamics of the family of $f \lambda(z)=\lambda\tan(z)$ and show that it has much in common with the dynamics of the familiar quadratic family $f c(z)=z2+c$. R. Oudkerk discusses the interesting phenomenon known as parabolic implosion and, in particular, shows the persistence of Fatou coordinates under perturbation. Finally, M. Taniguchi discusses deformation spaces of entire functions and their combinatorial structure of singularities of the functions. The bookis intended for graduate students and research mathematicians interested in complex dynamics, function theory, and non-Archimedean function theory.
Publisher: American Mathematical Soc.
ISBN: 0821829807
Category : Mathematics
Languages : en
Pages : 146
Book Description
This volume contains six detailed papers written by participants of the special session on value distribution theory and complex dynamics held in Hong Kong at the First Joint International Meeting of the AMS and the Hong Kong Mathematical Society in December 2000. It demonstrates the strong interconnections between the two fields and introduces recent progress of leading researchers from Asia. In the book, W. Bergweiler discusses proper analytic maps with one critical point andgeneralizes a previous result concerning Leau domains. W. Cherry and J. Wang discuss non-Archimedean analogs of Picard's theorems. P.-C. Hu and C.-C. Yang give a survey of results in non-Archimedean value distribution theory related to unique range sets, the $abc$-conjecture, and Shiffman's conjecture.L. Keen and J. Kotus explore the dynamics of the family of $f \lambda(z)=\lambda\tan(z)$ and show that it has much in common with the dynamics of the familiar quadratic family $f c(z)=z2+c$. R. Oudkerk discusses the interesting phenomenon known as parabolic implosion and, in particular, shows the persistence of Fatou coordinates under perturbation. Finally, M. Taniguchi discusses deformation spaces of entire functions and their combinatorial structure of singularities of the functions. The bookis intended for graduate students and research mathematicians interested in complex dynamics, function theory, and non-Archimedean function theory.
Differentiable and Complex Dynamics of Several Variables
Author: Pei-Chu Hu
Publisher: Springer Science & Business Media
ISBN: 9401592993
Category : Mathematics
Languages : en
Pages : 348
Book Description
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.
Publisher: Springer Science & Business Media
ISBN: 9401592993
Category : Mathematics
Languages : en
Pages : 348
Book Description
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.
Complex Geometry and Dynamics
Author: John Erik Fornæss
Publisher: Springer
ISBN: 3319203371
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world’s leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
Publisher: Springer
ISBN: 3319203371
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world’s leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
Geometry, Groups and Dynamics
Author: C. S. Aravinda
Publisher: American Mathematical Soc.
ISBN: 0821898825
Category : Mathematics
Languages : en
Pages : 386
Book Description
This volume contains the proceedings of the ICTS Program: Groups, Geometry and Dynamics, held December 3-16, 2012, at CEMS, Almora, India. The activity was an academic tribute to Ravi S. Kulkarni on his turning seventy. Articles included in this volume, both introductory and advanced surveys, represent the broad area of geometry that encompasses a large portion of group theory (finite or otherwise) and dynamics in its proximity. These areas have been influenced by Kulkarni's ideas and are closely related to his work and contribution.
Publisher: American Mathematical Soc.
ISBN: 0821898825
Category : Mathematics
Languages : en
Pages : 386
Book Description
This volume contains the proceedings of the ICTS Program: Groups, Geometry and Dynamics, held December 3-16, 2012, at CEMS, Almora, India. The activity was an academic tribute to Ravi S. Kulkarni on his turning seventy. Articles included in this volume, both introductory and advanced surveys, represent the broad area of geometry that encompasses a large portion of group theory (finite or otherwise) and dynamics in its proximity. These areas have been influenced by Kulkarni's ideas and are closely related to his work and contribution.
Meromorphic Functions over Non-Archimedean Fields
Author: Pei-Chu Hu
Publisher: Springer Science & Business Media
ISBN: 9401594155
Category : Mathematics
Languages : en
Pages : 296
Book Description
Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value distribution theory, the main problem is that given a holomorphic curve f : C -+ M into a projective variety M of dimension n and a family 01 of hypersurfaces on M, under a proper condition of non-degeneracy on f, find the defect relation. If 01 n is a family of hyperplanes on M = r in general position and if the smallest dimension of linear subspaces containing the image f(C) is k, Cartan conjectured that the bound of defect relation is 2n - k + 1. Generally, if 01 is a family of admissible or normal crossings hypersurfaces, there are respectively Shiffman's conjecture and Griffiths-Lang's conjecture. Here we list the process of this problem: A. Complex analysis: (i) Constant targets: R. Nevanlinna[98] for n = k = 1; H. Cartan [20] for n = k > 1; E. I. Nochka [99], [100],[101] for n > k ~ 1; Shiffman's conjecture partially solved by Hu-Yang [71J; Griffiths-Lang's conjecture (open).
Publisher: Springer Science & Business Media
ISBN: 9401594155
Category : Mathematics
Languages : en
Pages : 296
Book Description
Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value distribution theory, the main problem is that given a holomorphic curve f : C -+ M into a projective variety M of dimension n and a family 01 of hypersurfaces on M, under a proper condition of non-degeneracy on f, find the defect relation. If 01 n is a family of hyperplanes on M = r in general position and if the smallest dimension of linear subspaces containing the image f(C) is k, Cartan conjectured that the bound of defect relation is 2n - k + 1. Generally, if 01 is a family of admissible or normal crossings hypersurfaces, there are respectively Shiffman's conjecture and Griffiths-Lang's conjecture. Here we list the process of this problem: A. Complex analysis: (i) Constant targets: R. Nevanlinna[98] for n = k = 1; H. Cartan [20] for n = k > 1; E. I. Nochka [99], [100],[101] for n > k ~ 1; Shiffman's conjecture partially solved by Hu-Yang [71J; Griffiths-Lang's conjecture (open).
Proceedings of the Second ISAAC Congress
Author: Heinrich G.W. Begehr
Publisher: Springer Science & Business Media
ISBN: 1461302692
Category : Mathematics
Languages : en
Pages : 786
Book Description
This book is the Proceedings of the Second ISAAC Congress. ISAAC is the acronym of the International Society for Analysis, its Applications and Computation. The president of ISAAC is Professor Robert P. Gilbert, the second named editor of this book, e-mail: [email protected]. The Congress is world-wide valued so highly that an application for a grant has been selected and this project has been executed with Grant No. 11-56 from *the Commemorative Association for the Japan World Exposition (1970). The finance of the publication of this book is exclusively the said Grant No. 11-56 from *. Thus, a pair of each one copy of two volumes of this book will be sent to all contributors, who registered at the Second ISAAC Congress in Fukuoka, free of charge by the Kluwer Academic Publishers. Analysis is understood here in the broad sense of the word, includ ing differential equations, integral equations, functional analysis, and function theory. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. With this objective, ISAAC organizes international Congresses for the presentation and dis cussion of research on analysis. ISAAC welcomes new members and those interested in joining ISAAC are encouraged to look at the web site http://www .math. udel.edu/ gilbert/isaac/index.html vi and http://www.math.fu-berlin.de/ rd/ ag/isaac/newton/index.html.
Publisher: Springer Science & Business Media
ISBN: 1461302692
Category : Mathematics
Languages : en
Pages : 786
Book Description
This book is the Proceedings of the Second ISAAC Congress. ISAAC is the acronym of the International Society for Analysis, its Applications and Computation. The president of ISAAC is Professor Robert P. Gilbert, the second named editor of this book, e-mail: [email protected]. The Congress is world-wide valued so highly that an application for a grant has been selected and this project has been executed with Grant No. 11-56 from *the Commemorative Association for the Japan World Exposition (1970). The finance of the publication of this book is exclusively the said Grant No. 11-56 from *. Thus, a pair of each one copy of two volumes of this book will be sent to all contributors, who registered at the Second ISAAC Congress in Fukuoka, free of charge by the Kluwer Academic Publishers. Analysis is understood here in the broad sense of the word, includ ing differential equations, integral equations, functional analysis, and function theory. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. With this objective, ISAAC organizes international Congresses for the presentation and dis cussion of research on analysis. ISAAC welcomes new members and those interested in joining ISAAC are encouraged to look at the web site http://www .math. udel.edu/ gilbert/isaac/index.html vi and http://www.math.fu-berlin.de/ rd/ ag/isaac/newton/index.html.
Value Distribution Theory and Related Topics
Author: Grigor A. Barsegian
Publisher: Springer Science & Business Media
ISBN: 1402079516
Category : Mathematics
Languages : en
Pages : 331
Book Description
The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.
Publisher: Springer Science & Business Media
ISBN: 1402079516
Category : Mathematics
Languages : en
Pages : 331
Book Description
The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.
A History of Complex Dynamics
Author: Daniel S. Alexander
Publisher: Springer Science & Business Media
ISBN: 366309197X
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
The contemporary study of complex dynamics, which has flourished so much in recent years, is based largely upon work by G. Julia (1918) and P. Fatou (1919/20). The goal of this book is to analyze this work from an historical perspective and show in detail, how it grew out of a corpus regarding the iteration of complex analytic functions. This began with investigations by E. Schröder (1870/71) which he made, when he studied Newton's method. In the 1880's, Gabriel Koenigs fashioned this study into a rigorous body of work and, thereby, influenced a lot the subsequent development. But only, when Fatou and Julia applied set theory as well as Paul Montel's theory of normal families, it was possible to develop a global approach to the iteration of rational maps. This book shows, how this intriguing piece of modern mathematics became reality.
Publisher: Springer Science & Business Media
ISBN: 366309197X
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
The contemporary study of complex dynamics, which has flourished so much in recent years, is based largely upon work by G. Julia (1918) and P. Fatou (1919/20). The goal of this book is to analyze this work from an historical perspective and show in detail, how it grew out of a corpus regarding the iteration of complex analytic functions. This began with investigations by E. Schröder (1870/71) which he made, when he studied Newton's method. In the 1880's, Gabriel Koenigs fashioned this study into a rigorous body of work and, thereby, influenced a lot the subsequent development. But only, when Fatou and Julia applied set theory as well as Paul Montel's theory of normal families, it was possible to develop a global approach to the iteration of rational maps. This book shows, how this intriguing piece of modern mathematics became reality.
Progress in Analysis
Author: International Society for Analysis, Applications, and Computation. Congress
Publisher: World Scientific
ISBN: 9812794255
Category : Mathematics
Languages : en
Pages : 737
Book Description
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Grlebeck et al.); Octonions (T Dray & C Monogue); Nonlinear Potential Theory (O Martio); Classical and Fine Potential Theory, Holomorphic and Finely Holomorphic Functions (P Tamrazov); Differential Geometry and Control Theory for PDEs (B Gulliver et al.); Differential Geometry and Quantum Physics (-); Dynamical Systems (B Fiedler); Attractors for Partial Differential Equations (G Raugel); Spectral Theory of Differential Operators (B Vainberg); Pseudodifferential Operators, Quantization and Signal Analysis (M W Wong); Microlocal Analysis (B-W Schulze & M Korey); Volume 2: Complex and Functional Analytic Methods in PDEs (A Cialdea et al.); Geometric Properties of Solutions of PDEs (R Magnanini); Qualitative Properties of Solutions of Hyperbolic and SchrAdinger Equations (M Reissig & K Yagdjian); Homogenization Moving Boundaries and Porous Media (A Bourgeat & R P Gilbert); Constructive Methods in Applied Problems (P Krutitskii); Waves in Complex Media (R P Gilbert & A Wirgin); Nonlinear Waves (I Lasiecka & H Koch); Mathematical Analysis of Problems in Solid Mechanics (K Hackl & X Li); Direct and Inverse Scattering (L Fishman); Inverse Problems (G N Makrakis et al.); Mathematical Methods in Non-Destructive Evaluation and Non-Destructive Testing (A Wirgin); Numerical Methods for PDEs, Systems and Optimization (A Ben-Israel & I Herrera). Readership: Graduate students and researchers in real, complex, numerical analysis, as well as mathematical physics."
Publisher: World Scientific
ISBN: 9812794255
Category : Mathematics
Languages : en
Pages : 737
Book Description
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Grlebeck et al.); Octonions (T Dray & C Monogue); Nonlinear Potential Theory (O Martio); Classical and Fine Potential Theory, Holomorphic and Finely Holomorphic Functions (P Tamrazov); Differential Geometry and Control Theory for PDEs (B Gulliver et al.); Differential Geometry and Quantum Physics (-); Dynamical Systems (B Fiedler); Attractors for Partial Differential Equations (G Raugel); Spectral Theory of Differential Operators (B Vainberg); Pseudodifferential Operators, Quantization and Signal Analysis (M W Wong); Microlocal Analysis (B-W Schulze & M Korey); Volume 2: Complex and Functional Analytic Methods in PDEs (A Cialdea et al.); Geometric Properties of Solutions of PDEs (R Magnanini); Qualitative Properties of Solutions of Hyperbolic and SchrAdinger Equations (M Reissig & K Yagdjian); Homogenization Moving Boundaries and Porous Media (A Bourgeat & R P Gilbert); Constructive Methods in Applied Problems (P Krutitskii); Waves in Complex Media (R P Gilbert & A Wirgin); Nonlinear Waves (I Lasiecka & H Koch); Mathematical Analysis of Problems in Solid Mechanics (K Hackl & X Li); Direct and Inverse Scattering (L Fishman); Inverse Problems (G N Makrakis et al.); Mathematical Methods in Non-Destructive Evaluation and Non-Destructive Testing (A Wirgin); Numerical Methods for PDEs, Systems and Optimization (A Ben-Israel & I Herrera). Readership: Graduate students and researchers in real, complex, numerical analysis, as well as mathematical physics."