Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization PDF full book. Access full book title Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization by . Download full books in PDF and EPUB format.

Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization

Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Classical methods of constrained optimization are often based on the assumptions that projection onto the constraint manifold is routine but accessing second-derivative information is not. Both assumptions need revision for the application of optimization to systems constrained by partial differential equations, in the contemporary limit of millions of state variables and in the parallel setting. Large-scale PDE solvers are complex pieces of software that exploit detailed knowledge of architecture and application and cannot easily be modified to fit the interface requirements of a blackbox optimizer. Furthermore, in view of the expense of PDE analyses, optimization methods not using second derivatives may require too many iterations to be practical. For general problems, automatic differentiation is likely to be the most convenient means of exploiting second derivatives. We delineate a role for automatic differentiation in matrix-free optimization formulations involving Newton's method, in which little more storage is required than that for the analysis code alone.

Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization

Using Automatic Differentiation for Second-order Matrix-free Methods in PDE-constrained Optimization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Classical methods of constrained optimization are often based on the assumptions that projection onto the constraint manifold is routine but accessing second-derivative information is not. Both assumptions need revision for the application of optimization to systems constrained by partial differential equations, in the contemporary limit of millions of state variables and in the parallel setting. Large-scale PDE solvers are complex pieces of software that exploit detailed knowledge of architecture and application and cannot easily be modified to fit the interface requirements of a blackbox optimizer. Furthermore, in view of the expense of PDE analyses, optimization methods not using second derivatives may require too many iterations to be practical. For general problems, automatic differentiation is likely to be the most convenient means of exploiting second derivatives. We delineate a role for automatic differentiation in matrix-free optimization formulations involving Newton's method, in which little more storage is required than that for the analysis code alone.

Automatic Differentiation of Algorithms

Automatic Differentiation of Algorithms PDF Author: George Corliss
Publisher: Springer Science & Business Media
ISBN: 1461300754
Category : Computers
Languages : en
Pages : 431

Book Description
A survey book focusing on the key relationships and synergies between automatic differentiation (AD) tools and other software tools, such as compilers and parallelizers, as well as their applications. The key objective is to survey the field and present the recent developments. In doing so the topics covered shed light on a variety of perspectives. They reflect the mathematical aspects, such as the differentiation of iterative processes, and the analysis of nonsmooth code. They cover the scientific programming aspects, such as the use of adjoints in optimization and the propagation of rounding errors. They also cover "implementation" problems.

Large-Scale PDE-Constrained Optimization

Large-Scale PDE-Constrained Optimization PDF Author: Lorenz T. Biegler
Publisher: Springer Science & Business Media
ISBN: 364255508X
Category : Mathematics
Languages : en
Pages : 347

Book Description
Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.

Automatic Differentiation: Applications, Theory, and Implementations

Automatic Differentiation: Applications, Theory, and Implementations PDF Author: H. Martin Bücker
Publisher: Springer Science & Business Media
ISBN: 3540284389
Category : Computers
Languages : en
Pages : 370

Book Description
Covers the state of the art in automatic differentiation theory and practice. Intended for computational scientists and engineers, this book aims to provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.

Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing PDF Author: Michael A. Heroux
Publisher: SIAM
ISBN: 9780898718133
Category : Computers
Languages : en
Pages : 421

Book Description
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.

Automatic Differentiation in MATLAB Using ADMAT with Applications

Automatic Differentiation in MATLAB Using ADMAT with Applications PDF Author: Thomas F. Coleman
Publisher: SIAM
ISBN: 1611974364
Category : Science
Languages : en
Pages : 114

Book Description
The calculation of partial derivatives is a fundamental need in scientific computing. Automatic differentiation (AD) can be applied straightforwardly to obtain all necessary partial derivatives (usually first and, possibly, second derivatives) regardless of a code?s complexity. However, the space and time efficiency of AD can be dramatically improved?sometimes transforming a problem from intractable to highly feasible?if inherent problem structure is used to apply AD in a judicious manner. Automatic Differentiation in MATLAB using ADMAT with Applications?discusses the efficient use of AD to solve real problems, especially multidimensional zero-finding and optimization, in the MATLAB environment. This book is concerned with the determination of the first and second derivatives in the context of solving scientific computing problems with an emphasis on optimization and solutions to nonlinear systems. The authors focus on the application rather than the implementation of AD, solve real nonlinear problems with high performance by exploiting the problem structure in the application of AD, and provide many easy to understand applications, examples, and MATLAB templates.?

Perspectives in Flow Control and Optimization

Perspectives in Flow Control and Optimization PDF Author: Max D. Gunzburger
Publisher: SIAM
ISBN: 089871527X
Category : Science
Languages : en
Pages : 273

Book Description
Introduces several approaches for solving flow control and optimization problems through the use of modern methods.

Advances in Automatic Differentiation

Advances in Automatic Differentiation PDF Author: Christian H. Bischof
Publisher: Springer Science & Business Media
ISBN: 3540689427
Category : Computers
Languages : en
Pages : 366

Book Description
The Fifth International Conference on Automatic Differentiation held from August 11 to 15, 2008 in Bonn, Germany, is the most recent one in a series that began in Breckenridge, USA, in 1991 and continued in Santa Fe, USA, in 1996, Nice, France, in 2000 and Chicago, USA, in 2004. The 31 papers included in these proceedings re?ect the state of the art in automatic differentiation (AD) with respect to theory, applications, and tool development. Overall, 53 authors from institutions in 9 countries contributed, demonstrating the worldwide acceptance of AD technology in computational science. Recently it was shown that the problem underlying AD is indeed NP-hard, f- mally proving the inherently challenging nature of this technology. So, most likely, no deterministic “silver bullet” polynomial algorithm can be devised that delivers optimum performance for general codes. In this context, the exploitation of doma- speci?c structural information is a driving issue in advancing practical AD tool and algorithm development. This trend is prominently re?ected in many of the pub- cations in this volume, not only in a better understanding of the interplay of AD and certain mathematical paradigms, but in particular in the use of hierarchical AD approaches that judiciously employ general AD techniques in application-speci?c - gorithmic harnesses. In this context, the understanding of structures such as sparsity of derivatives, or generalizations of this concept like scarcity, plays a critical role, in particular for higher derivative computations.

Matrix Free Second Order Methods in Implicit Time Integration for Compressible Flows Using Automatic Differentiation

Matrix Free Second Order Methods in Implicit Time Integration for Compressible Flows Using Automatic Differentiation PDF Author: Frank Dieter Bramkamp
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description


Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method PDF Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723

Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.