Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine PDF full book. Access full book title Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine by Vaibhav Lawand. Download full books in PDF and EPUB format.

Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine

Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine PDF Author: Vaibhav Lawand
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The second law analysis is a powerful tool for assessing the performance of engines and has been employed for few decades now. Turbocharged diesel engines have been explored in much detail with the help of second law analyses. There is also a need to examine the turbocharged spark-ignition engines in greater detail using second law analyses as they are gaining popularity in high performance and conventional automobiles as well. A thermodynamic simulation was developed in order to investigate the effects of turbocharging on spark-ignition engines from second law perspective. The exergy values associated with the components of the turbocharger along with the engine components were quantified as a percentage of fuel exergy. The exergy balance values indicated that turbocharger does not add considerably to the overall irreversibilities and combustion irreversibility is still the major source of exergy destruction. A comprehensive parametric investigation was also performed to investigate the effects of compression ratio, intercooler effectiveness, etc. for the turbocharged spark-ignition engine over the entire load and speed range. The simulation studies helped in understanding the behavior of turbocharged spark-ignition engine with these parameters. A simulation study was also performed to compare the turbocharged engine with the naturally aspirated spark-ignition engine. This study examined the engines for operating parameters like bmep and bsfc over the entire speed range and revealed that turbocharging offers higher bmep and lower bsfc values for most of the operating range. In an additional study, these engines were analyzed for the brake thermal efficiency values at part load. The results indicated that turbocharging offers marginally higher brake thermal efficiency at part loads.

Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine

Use of a Thermodynamic Engine Cycle Simulation to Study a Turbocharged Spark-ignition Engine PDF Author: Vaibhav Lawand
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The second law analysis is a powerful tool for assessing the performance of engines and has been employed for few decades now. Turbocharged diesel engines have been explored in much detail with the help of second law analyses. There is also a need to examine the turbocharged spark-ignition engines in greater detail using second law analyses as they are gaining popularity in high performance and conventional automobiles as well. A thermodynamic simulation was developed in order to investigate the effects of turbocharging on spark-ignition engines from second law perspective. The exergy values associated with the components of the turbocharger along with the engine components were quantified as a percentage of fuel exergy. The exergy balance values indicated that turbocharger does not add considerably to the overall irreversibilities and combustion irreversibility is still the major source of exergy destruction. A comprehensive parametric investigation was also performed to investigate the effects of compression ratio, intercooler effectiveness, etc. for the turbocharged spark-ignition engine over the entire load and speed range. The simulation studies helped in understanding the behavior of turbocharged spark-ignition engine with these parameters. A simulation study was also performed to compare the turbocharged engine with the naturally aspirated spark-ignition engine. This study examined the engines for operating parameters like bmep and bsfc over the entire speed range and revealed that turbocharging offers higher bmep and lower bsfc values for most of the operating range. In an additional study, these engines were analyzed for the brake thermal efficiency values at part load. The results indicated that turbocharging offers marginally higher brake thermal efficiency at part loads.

Quasi-Dimensional Simulation of Spark Ignition Engines

Quasi-Dimensional Simulation of Spark Ignition Engines PDF Author: Alejandro Medina
Publisher: Springer Science & Business Media
ISBN: 1447152891
Category : Technology & Engineering
Languages : en
Pages : 201

Book Description
Based on the simulations developed in research groups over the past years, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations. Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines

An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines

An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines PDF Author: Jerald A. Caton
Publisher: John Wiley & Sons
ISBN: 1119037581
Category : Technology & Engineering
Languages : en
Pages : 381

Book Description
This book provides an introduction to basic thermodynamic engine cycle simulations, and provides a substantial set of results. Key features includes comprehensive and detailed documentation of the mathematical foundations and solutions required for thermodynamic engine cycle simulations. The book includes a thorough presentation of results based on the second law of thermodynamics as well as results for advanced, high efficiency engines. Case studies that illustrate the use of engine cycle simulations are also provided.

Simulation of the Thermodynamic Cycle of the Spark-ignition Engine

Simulation of the Thermodynamic Cycle of the Spark-ignition Engine PDF Author: Nabil I. D. Beithou
Publisher:
ISBN:
Category : Electric automobiles
Languages : en
Pages : 150

Book Description


Internal Combustion Engines

Internal Combustion Engines PDF Author: Rowland S. Benson
Publisher: Elsevier
ISBN: 1483140024
Category : Technology & Engineering
Languages : en
Pages : 216

Book Description
Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text takes a look at air standard cycle and combustion in spark and compression ignition engines. Air standard cycle efficiencies; models for compression ignition combustion calculations; chemical thermodynamic models for normal combustion; and combustion-generated emissions are underscored. The publication also considers heat transfer in engines, including heat transfer in internal combustion and instantaneous heat transfer calculations. The book is a dependable reference for readers interested in spark and compression ignition engines.

Utilizing a Cycle Simulation to Examine the Use of Exhaust Gas Recirculation (EGR) for a Spark-ignition Engine

Utilizing a Cycle Simulation to Examine the Use of Exhaust Gas Recirculation (EGR) for a Spark-ignition Engine PDF Author: Rajeshkumar Ghanshyambhai Shyani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The exhaust gas recirculation (EGR) system has been widely used to reduce nitrogen oxide (NOx) emission, improve fuel economy and suppress knock by using the characteristics of charge dilution. However, previous studies have shown that as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and increasing hydrocarbon emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. A thermodynamic cycle simulation of the four-stroke spark-ignition engine was used to determine the effects of EGR on engine performance, emission characteristics and second law parameters, considering combustion instability issues as EGR level increases. A parameter, called 'Fuel Fraction Burned, ' was introduced as a function of the EGR percentage and used in the simulation to incorporate the combustion instability effects. A comprehensive parametric investigation was conducted to examine the effects of variations in EGR, load and speed for a 5.7 liter spark-ignition automotive engine. Variations in the thermal efficiencies, brake specific NOx emissions, average combustion temperature, mean exhaust temperature, maximum temperature and relative heat transfer as functions of exhaust gas recycle were determined for both cooled and adiabatic EGR configurations. Also effects of variations in the load and speed on thermal efficiencies, relative heat transfers and destruction of availability due to combustion were determined for 0% EGR and 20% EGR cases with both cooled and adiabatic configurations. For both EGR configurations, thermal efficiencies first increase, reach a maximum at about 16% EGR and then decrease as the EGR level increases. Thermal efficiencies are slightly higher for cooled EGR configuration than that for adiabatic configuration. Concentration of nitric oxide emissions decreases from about 2950 ppm to 200 ppm as EGR level increases from 0% to 20% for cooled EGR configuration. The cooled EGR configuration results in lower nitric oxide emissions relative to the adiabatic EGR configuration. Also second law parameters show the expected trends as functions of EGR. Brake thermal efficiency is higher for the 20% EGR case than that for the no EGR case over the range of load (0 to WOT) and speed (600 rpm to 6000 rpm). Predictions made from the simulation were compared with some of the available experimental results. Predicted thermal efficiencies showed a similar trend when compared to the available experimental data. Also, percentage of unused fuel availability increases as the EGR level increases, and it can be seen as one of the effects of deteriorating combustion quality as the EGR level increases.

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373

Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Improved Engine Design Concepts Using the Second Law of Thermodynamics

Improved Engine Design Concepts Using the Second Law of Thermodynamics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ((almost equal to)21%) for a range of operating and design parameters. Further, to achieve high efficiency engines requires that the exergy be managed and not necessarily reduced. The overall thermodynamics is the final discriminator regarding high efficiency engines.

Simulation Studies of the Effects of Turbocharging and Reduced Heat Transfer on Spark-ignition Engine Operation

Simulation Studies of the Effects of Turbocharging and Reduced Heat Transfer on Spark-ignition Engine Operation PDF Author: Paula A. Watts
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 19

Book Description


Modeling and Computer Simulation of Internal Combustion Engines

Modeling and Computer Simulation of Internal Combustion Engines PDF Author:
Publisher:
ISBN:
Category : Internal combustion engines
Languages : en
Pages : 1010

Book Description