Person Re-Identification PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Person Re-Identification PDF full book. Access full book title Person Re-Identification by Shaogang Gong. Download full books in PDF and EPUB format.

Person Re-Identification

Person Re-Identification PDF Author: Shaogang Gong
Publisher: Springer Science & Business Media
ISBN: 144716296X
Category : Computers
Languages : en
Pages : 446

Book Description
The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

Person Re-Identification

Person Re-Identification PDF Author: Shaogang Gong
Publisher: Springer Science & Business Media
ISBN: 144716296X
Category : Computers
Languages : en
Pages : 446

Book Description
The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

Domain Adaptation in Computer Vision with Deep Learning

Domain Adaptation in Computer Vision with Deep Learning PDF Author: Hemanth Venkateswara
Publisher: Springer Nature
ISBN: 3030455297
Category : Computers
Languages : en
Pages : 256

Book Description
This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.

Information Processing in Medical Imaging

Information Processing in Medical Imaging PDF Author: Aasa Feragen
Publisher: Springer Nature
ISBN: 3030781917
Category : Computers
Languages : en
Pages : 784

Book Description
This book constitutes the proceedings of the 27th International Conference on Information Processing in Medical Imaging, IPMI 2021, which was held online during June 28-30, 2021. The conference was originally planned to take place in Bornholm, Denmark, but changed to a virtual format due to the COVID-19 pandemic. The 59 full papers presented in this volume were carefully reviewed and selected from 200 submissions. They were organized in topical sections as follows: registration; causal models and interpretability; generative modelling; shape; brain connectivity; representation learning; segmentation; sequential modelling; learning with few or low quality labels; uncertainty quantification and generative modelling; and deep learning.

Computer Vision – ECCV 2020

Computer Vision – ECCV 2020 PDF Author: Andrea Vedaldi
Publisher: Springer Nature
ISBN: 3030585743
Category : Computers
Languages : en
Pages : 830

Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Information Processing in Medical Imaging

Information Processing in Medical Imaging PDF Author: Marc Niethammer
Publisher: Springer
ISBN: 3319590502
Category : Computers
Languages : en
Pages : 691

Book Description
This book constitutes the proceedings of the 25th International Conference on Information Processing in Medical Imaging, IPMI 2017, held at the Appalachian State University, Boon, NC, USA, in June 2017. The 53 full papers presented in this volume were carefully reviewed and selected from 147 submissions. They were organized in topical sections named: analysis on manifolds; shape analysis; disease diagnosis/progression; brain networks an connectivity; diffusion imaging; quantitative imaging; imaging genomics; image registration; segmentation; general image analysis.

Advances in Domain Adaptation Theory

Advances in Domain Adaptation Theory PDF Author: Ievgen Redko
Publisher: Elsevier
ISBN: 0081023472
Category : Computers
Languages : en
Pages : 210

Book Description
Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability based bounds. In addition, the book explains domain adaptation problem and describes the four major families of theoretical results that exist in the literature, including the Divergence based bounds. Next, PAC-Bayesian bounds are discussed, including the original PAC-Bayesian bounds for domain adaptation and their updated version. Additional sections present generalization guarantees based on the robustness and stability properties of the learning algorithm. - Gives an overview of current results on transfer learning - Focuses on the adaptation of the field from a theoretical point-of-view - Describes four major families of theoretical results in the literature - Summarizes existing results on adaptation in the field - Provides tips for future research

Arrangements of Hyperplanes

Arrangements of Hyperplanes PDF Author: Peter Orlik
Publisher: Springer Science & Business Media
ISBN: 9783540552598
Category : Mathematics
Languages : en
Pages : 352

Book Description
An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject.

Computer Vision – ECCV 2016

Computer Vision – ECCV 2016 PDF Author: Bastian Leibe
Publisher: Springer
ISBN: 3319464930
Category : Computers
Languages : en
Pages : 902

Book Description
The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physicsbased vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action activity and tracking; 3D; and 9 poster sessions.

Domain Adaptation for Visual Understanding

Domain Adaptation for Visual Understanding PDF Author: Richa Singh
Publisher: Springer Nature
ISBN: 3030306712
Category : Computers
Languages : en
Pages : 148

Book Description
This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition. Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presents a technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods. This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding.

2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) PDF Author: IEEE Staff
Publisher:
ISBN: 9781665429825
Category :
Languages : en
Pages :

Book Description
We solicit high quality original research papers (including significant work in progress) in any aspect of bioinformatics, genomics, and biomedicine New computational techniques and methods and their application in life science and medical domains are especially encouraged