Author: Øyvind Ryan
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
Linear Algebra, Signal Processing, and Wavelets - A Unified Approach
Author: Øyvind Ryan
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
A Unified Introduction to Linear Algebra
Author: Alan Tucker
Publisher: MacMillan Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Publisher: MacMillan Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Algebra: Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Student Solution Manual to Accompany the 4th Edition of Vector Calculus, Linear Algebra, and Differential Forms, a Unified Approach
Author: John Hamal Hubbard
Publisher:
ISBN: 9780971576674
Category : Algebras, Linear
Languages : en
Pages : 284
Book Description
Publisher:
ISBN: 9780971576674
Category : Algebras, Linear
Languages : en
Pages : 284
Book Description
Undergraduate Algebra
Author: Matej Brešar
Publisher: Springer
ISBN: 9783030140526
Category : Mathematics
Languages : en
Pages : 316
Book Description
This textbook offers an innovative approach to abstract algebra, based on a unified treatment of similar concepts across different algebraic structures. This makes it possible to express the main ideas of algebra more clearly and to avoid unnecessary repetition. The book consists of two parts: The Language of Algebra and Algebra in Action. The unified approach to different algebraic structures is a primary feature of the first part, which discusses the basic notions of algebra at an elementary level. The second part is mathematically more complex, covering topics such as the Sylow theorems, modules over principal ideal domains, and Galois theory. Intended for an undergraduate course or for self-study, the book is written in a readable, conversational style, is rich in examples, and contains over 700 carefully selected exercises.
Publisher: Springer
ISBN: 9783030140526
Category : Mathematics
Languages : en
Pages : 316
Book Description
This textbook offers an innovative approach to abstract algebra, based on a unified treatment of similar concepts across different algebraic structures. This makes it possible to express the main ideas of algebra more clearly and to avoid unnecessary repetition. The book consists of two parts: The Language of Algebra and Algebra in Action. The unified approach to different algebraic structures is a primary feature of the first part, which discusses the basic notions of algebra at an elementary level. The second part is mathematically more complex, covering topics such as the Sylow theorems, modules over principal ideal domains, and Galois theory. Intended for an undergraduate course or for self-study, the book is written in a readable, conversational style, is rich in examples, and contains over 700 carefully selected exercises.
A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Clifford Algebra to Geometric Calculus
Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Special Functions
Author: Sergeĭ I︠U︡rʹevich Slavi︠a︡nov
Publisher: Oxford University Press, USA
ISBN: 9780198505730
Category : Mathematics
Languages : en
Pages : 318
Book Description
The subject of this book is the theory of special functions, not considered as a list of functions exhibiting a certain range of properties, but based on the unified study of singularities of second-order ordinary differential equations in the complex domain. The number and characteristics of the singularities serve as a basis for classification of each individual special function. Links between linear special functions (as solutions of linear second-order equations), and non-linear special functions (as solutions of Painlevé equations) are presented as a basic and new result. Many applications to different areas of physics are shown and discussed. The book is written from a practical point of view and will address all those scientists whose work involves applications of mathematical methods. Lecturers, graduate students and researchers will find this a useful text and reference work.
Publisher: Oxford University Press, USA
ISBN: 9780198505730
Category : Mathematics
Languages : en
Pages : 318
Book Description
The subject of this book is the theory of special functions, not considered as a list of functions exhibiting a certain range of properties, but based on the unified study of singularities of second-order ordinary differential equations in the complex domain. The number and characteristics of the singularities serve as a basis for classification of each individual special function. Links between linear special functions (as solutions of linear second-order equations), and non-linear special functions (as solutions of Painlevé equations) are presented as a basic and new result. Many applications to different areas of physics are shown and discussed. The book is written from a practical point of view and will address all those scientists whose work involves applications of mathematical methods. Lecturers, graduate students and researchers will find this a useful text and reference work.
UNIFIED MATHEMATICS ABSTRACT ALGEBRA
Author: B. R. THAKUR
Publisher: Ram Prasad Publications(R.P.H.)
ISBN: 9385630016
Category : Mathematics
Languages : en
Pages : 445
Book Description
MATHEMATICS, GANIT, RAM PRASAD, RP UNIFIED, RPP
Publisher: Ram Prasad Publications(R.P.H.)
ISBN: 9385630016
Category : Mathematics
Languages : en
Pages : 445
Book Description
MATHEMATICS, GANIT, RAM PRASAD, RP UNIFIED, RPP
Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers
Author: Nicholas H. Wasserman
Publisher: Springer
ISBN: 3319992147
Category : Education
Languages : en
Pages : 465
Book Description
Secondary mathematics teachers are frequently required to take a large number of mathematics courses – including advanced mathematics courses such as abstract algebra – as part of their initial teacher preparation program and/or their continuing professional development. The content areas of advanced and secondary mathematics are closely connected. Yet, despite this connection many secondary teachers insist that such advanced mathematics is unrelated to their future professional work in the classroom. This edited volume elaborates on some of the connections between abstract algebra and secondary mathematics, including why and in what ways they may be important for secondary teachers. Notably, the volume disseminates research findings about how secondary teachers engage with, and make sense of, abstract algebra ideas, both in general and in relation to their own teaching, as well as offers itself as a place to share practical ideas and resources for secondary mathematics teacher preparation and professional development. Contributors to the book are scholars who have both experience in the mathematical preparation of secondary teachers, especially in relation to abstract algebra, as well as those who have engaged in related educational research. The volume addresses some of the persistent issues in secondary mathematics teacher education in connection to advanced mathematics courses, as well as situates and conceptualizes different ways in which abstract algebra might be influential for teachers of algebra. Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers is a productive resource for mathematics teacher educators who teach capstone courses or content-focused methods courses, as well as for abstract algebra instructors interested in making connections to secondary mathematics.
Publisher: Springer
ISBN: 3319992147
Category : Education
Languages : en
Pages : 465
Book Description
Secondary mathematics teachers are frequently required to take a large number of mathematics courses – including advanced mathematics courses such as abstract algebra – as part of their initial teacher preparation program and/or their continuing professional development. The content areas of advanced and secondary mathematics are closely connected. Yet, despite this connection many secondary teachers insist that such advanced mathematics is unrelated to their future professional work in the classroom. This edited volume elaborates on some of the connections between abstract algebra and secondary mathematics, including why and in what ways they may be important for secondary teachers. Notably, the volume disseminates research findings about how secondary teachers engage with, and make sense of, abstract algebra ideas, both in general and in relation to their own teaching, as well as offers itself as a place to share practical ideas and resources for secondary mathematics teacher preparation and professional development. Contributors to the book are scholars who have both experience in the mathematical preparation of secondary teachers, especially in relation to abstract algebra, as well as those who have engaged in related educational research. The volume addresses some of the persistent issues in secondary mathematics teacher education in connection to advanced mathematics courses, as well as situates and conceptualizes different ways in which abstract algebra might be influential for teachers of algebra. Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers is a productive resource for mathematics teacher educators who teach capstone courses or content-focused methods courses, as well as for abstract algebra instructors interested in making connections to secondary mathematics.