Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS). PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS). PDF full book. Access full book title Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS). by Tarun K. Podder. Download full books in PDF and EPUB format.

Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS).

Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS). PDF Author: Tarun K. Podder
Publisher:
ISBN: 9783866112834
Category :
Languages : en
Pages :

Book Description
We have proposed a new unified dynamics-based motion planning algorithm that can generate both kinematically admissible and dynamically feasible joint-space trajectories for systems composed of heterogeneous dynamics. We have then extended this algorithm for an autonomous underwater vehicle-manipulator system, where the dynamic response of the vehicle is much slower than that of the manipulator. We have also exploited the kinemetic redundancy to accommodate the thruster/actuator faults and saturation and also to minimize hydrodynamic drag. We have incorporated thruster dynamics when modeling the UVMS. Although, some researchers have exploited kinematic redundancy for optimizing various criteria, but those work have mainly addressed to problems with land-based robotics or space-robotics. Hardly any motion planning algorithm has been developed for autonomous underwater vehiclemanipulator system. In this research, work we have formulated a new unified motion planning algorithm for a heterogeneous underwater robotic system that has a vastly different dynamic bandwidth. The results from computer simulation demonstrate the effectiveness of the proposed method. It shows that the proposed algorithm not only improves the trajectory tracking performance but also significantly reduce the energy consumption and the power requirements for the operation of an autonomous UVMS. We have not presented results from Case II (Total Decomposition) because of the length of the paper. However, these results are comparable to the conventional motion planning approach. In future, instead of Fourier decomposition, one can try to use wavelet approach to decompose the task-space trajectory into system's sub-component compatible segments. There are a few drawbacks of this paper as well. We used a model-based control technique to evaluate our planning algorithm. However, the underwater environment is uncertain and we need to use adaptive control techniques in future. Although the fault-tolerant control algorithm has been experimentally verified, the other proposed algorithms need to be validated by experiments.

Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS).

Unified Dynamics-based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS). PDF Author: Tarun K. Podder
Publisher:
ISBN: 9783866112834
Category :
Languages : en
Pages :

Book Description
We have proposed a new unified dynamics-based motion planning algorithm that can generate both kinematically admissible and dynamically feasible joint-space trajectories for systems composed of heterogeneous dynamics. We have then extended this algorithm for an autonomous underwater vehicle-manipulator system, where the dynamic response of the vehicle is much slower than that of the manipulator. We have also exploited the kinemetic redundancy to accommodate the thruster/actuator faults and saturation and also to minimize hydrodynamic drag. We have incorporated thruster dynamics when modeling the UVMS. Although, some researchers have exploited kinematic redundancy for optimizing various criteria, but those work have mainly addressed to problems with land-based robotics or space-robotics. Hardly any motion planning algorithm has been developed for autonomous underwater vehiclemanipulator system. In this research, work we have formulated a new unified motion planning algorithm for a heterogeneous underwater robotic system that has a vastly different dynamic bandwidth. The results from computer simulation demonstrate the effectiveness of the proposed method. It shows that the proposed algorithm not only improves the trajectory tracking performance but also significantly reduce the energy consumption and the power requirements for the operation of an autonomous UVMS. We have not presented results from Case II (Total Decomposition) because of the length of the paper. However, these results are comparable to the conventional motion planning approach. In future, instead of Fourier decomposition, one can try to use wavelet approach to decompose the task-space trajectory into system's sub-component compatible segments. There are a few drawbacks of this paper as well. We used a model-based control technique to evaluate our planning algorithm. However, the underwater environment is uncertain and we need to use adaptive control techniques in future. Although the fault-tolerant control algorithm has been experimentally verified, the other proposed algorithms need to be validated by experiments.

Underwater Robots

Underwater Robots PDF Author: Gianluca Antonelli
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 314

Book Description
This book deals with the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided; experimental results obtained with the vehicle ODIN are presented. The presence of a manipulator is further studied in the aspects of kinematic, dynamic and interaction control. The purpose of this second edition is to add material n.

Modelling and Control of Mechatronic and Robotic Systems

Modelling and Control of Mechatronic and Robotic Systems PDF Author: Alessandro Gasparetto
Publisher: MDPI
ISBN: 3036511229
Category : Technology & Engineering
Languages : en
Pages : 404

Book Description
Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Underwater Biomimetic Vehicle-Manipulator System

Underwater Biomimetic Vehicle-Manipulator System PDF Author: Shuo Wang
Publisher: Springer Nature
ISBN: 9819906555
Category : Technology & Engineering
Languages : en
Pages : 181

Book Description
This book is about the design and control of biomimetic underwater robots. It explains the six aspects of the underwater biomimetic vehicle- manipulator system in detail and provides practical examples. This book is the authors’ long-term exploration of the theoretical and technical issues in the development of the underwater biomimetic vehicle-manipulator system and is written based on more than 15 years of scientific research and practical experience. This book is a helpful reference for the researchers, engineers, master and Ph.D. students in the field of biomimetic underwater robots.

Underwater Robots

Underwater Robots PDF Author: Gianluca Antonelli
Publisher: Springer
ISBN: 3319028774
Category : Technology & Engineering
Languages : en
Pages : 294

Book Description
This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.

Intelligent Marine Robotics Modelling, Simulation and Applications

Intelligent Marine Robotics Modelling, Simulation and Applications PDF Author: Cheng Siong Chin
Publisher: MDPI
ISBN: 3039281321
Category : Science
Languages : en
Pages : 242

Book Description
The biennial Congress of the Italian Society of Oral Pathology and Medicine (SIPMO) is an International meeting dedicated to the growing diagnostic challenges in the oral pathology and medicine field. The III International and XV National edition will be a chance to discuss clinical conditions which are unusual, rare, or difficult to define. Many consolidated national and international research groups will be involved in the debate and discussion through special guest lecturers, academic dissertations, single clinical case presentations, posters, and degree thesis discussions. The SIPMO Congress took place from the 17th to the 19th of October 2019 in Bari (Italy), and the enclosed copy of Proceedings is a non-exhaustive collection of abstracts from the SIPMO 2019 contributions.

Motion Planning of Autonomous Underwater Vehicle-manipulator Systems

Motion Planning of Autonomous Underwater Vehicle-manipulator Systems PDF Author: Tarun Kanti Podder
Publisher:
ISBN:
Category : Autonomous robots
Languages : en
Pages : 284

Book Description


A Sampling-based Model Predictive Control Approach to Motion Planning for Autonomous Underwater Vehicles

A Sampling-based Model Predictive Control Approach to Motion Planning for Autonomous Underwater Vehicles PDF Author: Charmane Venda Caldwell
Publisher:
ISBN:
Category :
Languages : en
Pages : 97

Book Description
ABSTRACT: In recent years there has been a demand from the commercial, research and military industries to complete tedious and hazardous underwater tasks. This has lead to the use of unmanned vehicles, in particular autonomous underwater vehicles (AUVs). To operate inthis environment the vehicle must display kinematically and dynamically feasible trajectories. Kinematic feasibility is important to allow for the limited turn radius of an AUV, while dynamic feasibility can take into consideration limited acceleration and braking capabilities due to actuator limitations and vehicle inertia. Model Predictive Control (MPC) is a method that has the ability to systematically handle multi-input multi-output (MIMO) control problems subject to constraints. It finds the control input by optimizing a cost function that incorporates a model of the system to predict future outputs subject to the constraints. This makes MPC a candidate method for AUV trajectory generation. However, traditional MPC has difficulties in computing control inputs in real time for processes with fast dynamics. This research applies a novel MPC approach, called Sampling-Based Model Predictive Control (SBMPC), to generate kinematically or dynamically feasible system trajectories for AUVs. The algorithm combines the benefits of sampling-based motion planning with MPC while avoiding some of the major pitfalls facing both traditional sampling-based planning algorithms and traditional MPC, namely large computation times and local minimum problems. SBMPC is based on sampling (i.e., discretizing) the input space at each sample period and implementing a goal-directed optimization method (e.g., A?) in place of standard nonlinear programming. SBMPC can avoid local minimum, has only two parameters to tune, and has small computational times that allows it to be used online fast systems. A kinematic model, decoupled dynamic model and full dynamic model are incorporated in SBMPC to generate a kinematic and dynamic feasible 3D path. Simulation results demonstrate the efficacy of SBMPC in guiding an autonomous underwater vehicle from a start position to a goal position in regions populated with various types of obstacles.

Oceans 2003

Oceans 2003 PDF Author:
Publisher:
ISBN:
Category : Marine resources
Languages : en
Pages : 702

Book Description


Advanced Model Predictive Control for Autonomous Marine Vehicles

Advanced Model Predictive Control for Autonomous Marine Vehicles PDF Author: Yang Shi
Publisher: Springer Nature
ISBN: 3031193547
Category : Technology & Engineering
Languages : en
Pages : 210

Book Description
This book provides a comprehensive overview of marine control system design related to underwater robotics applications. In particular, it presents novel optimization-based model predictive control strategies to solve control problems appearing in autonomous underwater vehicle applications. These novel approaches bring unique features, such as constraint handling, prioritization between multiple design objectives, optimal control performance, and robustness against disturbances and uncertainties, into the control system design. They therefore form a more general framework to design marine control systems and can be widely applied. Advanced Model Predictive Control for Autonomous Marine Vehicles balances theoretical rigor – providing thorough analysis and developing provably-correct design conditions – and application perspectives – addressing practical system constraints and implementation issues. Starting with a fixed-point positioning problem for a single vehicle and progressing to the trajectory-tracking and path-following problem of the vehicle, and then to the coordination control of a large-scale multi-robot team, this book addresses the motion control problems, increasing their level of challenge step-by-step. At each step, related subproblems such as path planning, thrust allocation, collision avoidance, and time constraints for real-time implementation are also discussed with solutions. In each chapter of this book, compact and illustrative examples are provided to demonstrate the design and implementation procedures. As a result, this book is useful for both theoretical study and practical engineering design, and the tools provided in the book are readily applicable for real-world implementation.