Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network PDF full book. Access full book title Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network by Sydney S. Ruhala. Download full books in PDF and EPUB format.

Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network

Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network PDF Author: Sydney S. Ruhala
Publisher:
ISBN: 9781369730289
Category : Electronic dissertations
Languages : en
Pages : 188

Book Description


Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network

Understanding the Role of the Stream-Groundwater Interface in Dissolved Organic Carbon Cycling in a Third-Order, Lowland River Network PDF Author: Sydney S. Ruhala
Publisher:
ISBN: 9781369730289
Category : Electronic dissertations
Languages : en
Pages : 188

Book Description


Intermittent Rivers and Ephemeral Streams

Intermittent Rivers and Ephemeral Streams PDF Author: Thibault Datry
Publisher: Academic Press
ISBN: 0128039043
Category : Science
Languages : en
Pages : 624

Book Description
Intermittent Rivers and Ephemeral Streams: Ecology and Management takes an internationally broad approach, seeking to compare and contrast findings across multiple continents, climates, flow regimes, and land uses to provide a complete and integrated perspective on the ecology of these ecosystems. Coupled with this, users will find a discussion of management approaches applicable in different regions that are illustrated with relevant case studies. In a readable and technically accurate style, the book utilizes logically framed chapters authored by experts in the field, allowing managers and policymakers to readily grasp ecological concepts and their application to specific situations. Provides up-to-date reviews of research findings and management strategies using international examples Explores themes and parallels across diverse sub-disciplines in ecology and water resource management utilizing a multidisciplinary and integrative approach Reveals the relevance of this scientific understanding to managers and policymakers

Pulse of the Stream

Pulse of the Stream PDF Author: Catherine Grace Winters
Publisher:
ISBN: 9781369354133
Category :
Languages : en
Pages : 204

Book Description
Biotic and abiotic factors both play critical roles in the cycling of organic matter and nutrients in aquatic ecosystems. Understanding the relative control of these factors on solute fate and transport in fluvial systems is important for understanding how climatic changes can affect water quality. Many processes that control solute cycling in streams occur at sub-daily scales, making high-frequency, in situ, sub-hourly measurements important for capturing the response of dissolved organic matter and nutrients to changes in the strength of controlling processes. The tightly coupled aquatic and terrestrial environments present in headwater streams make them particularly useful systems for studying high-frequency changes in water chemistry. In this study, we examined the patterns of dissolved organic carbon, nitrate, dissolved oxygen, temperature, dissolved organic matter fluorescence, and stream discharge using in-stream measurements at sub-hourly to monthly time scales to understand the daily and seasonal controls of aquatic organic matter and nutrient processing. We also conducted a laboratory incubation to measure the effects of dissolved organic carbon and nutrient treatments on consumption of carbon and nitrogen in our system. Our main objectives were to identify: 1) the relative controls of diel biotic and abiotic processes on stream dissolved organic carbon and nitrate-N; and 2) the mechanisms controlling rapid autumnal changes in dissolved organic carbon and nitrate-N in stream runoff. We found that hydrology plays a key role in transporting solutes to a forested headwater stream in the Piedmont Region, Maryland; however, once solutes reach the stream biotic controls dominate the stream solute patterns. Biology is an important regulator of diel patterns of streamwater dissolved organic carbon and nitrate concentrations during springtime and autumn leaf fall. Diel cycling is most apparent during the spring prior to leaf out when the water temperature is increasing. Where patterns were evident, nitrate (annual average in second order stream: 17:00) and discharge (17:28) reached their minimums during the afternoon within a few hours of the peaks in dissolved oxygen (13:16), temperature (15:17), dissolved organic carbon (16:06), and dissolved organic matter fluorescence (17:23). Larger amplitudes of dissolved oxygen, nitrate, dissolved organic carbon, and dissolved organic matter fluorescence correspond with larger daily temperature changes. Laboratory incubations showed increased consumption of nitrogen in the presence of labile carbon, but not in the presence of labile carbon plus nutrients, which indicates our system is carbon limited. Autumn dissolved organic carbon and nitrate dynamics also indicate our system is carbon limited. Increased rates of leaf litter fall corresponded with increased consumption of stream nitrate leading to a late October depression, or annual minimum, in nitrate concentration. Storm events accelerated the recovery of stream nitrate to early autumn concentrations as nitrate was mobilized and transported from soils to the stream. Hydrology is important for solute transport to and export from the stream. Autotrophic activity dominates on the daily scale, while heterotrophic activity controls seasonal responses in organic matter and nutrient cycling in this forested watershed. Carbon and nitrogen dynamics have been studied in other forested systems, as well, but the controlling processes vary among these watershed. Our results highlight the importance of understanding controlling processes within specific watersheds when making large scale predictions of the potential export of carbon and nitrogen from forested systems.

Sources, Transportation, and Utilization of Dissolved Organic Matter in Groundwater and Streams

Sources, Transportation, and Utilization of Dissolved Organic Matter in Groundwater and Streams PDF Author: P. M. Wallis
Publisher: Canada. Inland Waters Directorate, Water Quality Branch
ISBN:
Category : Groundwater
Languages : en
Pages : 68

Book Description
"It has long been recognized that streams in their natural state support a great deal more biomass than can be justified by primary production. This is believed to be the result of energy inputs to streams from terrestrial plants and animals which take the form of either Dissolved Organic Matter (DOM.45μ spherical diameter), or Particulate Organic Matter (POM.45μ)"--Introduction, page 1.

Spatio-temporal Variation and Dissolved Organic Carbon Processing of Streambed Microbial Community

Spatio-temporal Variation and Dissolved Organic Carbon Processing of Streambed Microbial Community PDF Author: Philips Olugbemiga Akinwole
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 168

Book Description
Sedimentary microbial communities play a critical ecological role in lotic ecosystems and are responsible for numerous biogeochemical transformations, including dissolved organic matter (DOM) uptake, degradation, and mineralization. The goals of this study were to elucidate the benthic microbes responsible for utilization of humic DOM in streams and to assess overall variability in microbial biomass and community structure over time and across multiple spatial scales in stream networks, as DOM quality and quantity will likely change with stream order. In Chapter 2, multiple spatial patterns of microbial biomass and community structure were examined in stream sediments from two watersheds; the Neversink River watershed (NY; 1st, 3rd and 5th order streams sampled) and the White Clay Creek watershed (PA; 1st through 3rd order streams sampled). Microbial biomass and community structure were estimated by phospholipid phosphate and phospholipid fatty acids (PLFA) analyses. Multivariate analysis showed that sedimentary C:N ratios, percent carbon, sediment surface area and percent water content explained 68% of the variations in total microbial biomass. Overall, the magnitude of within stream variation in microbial biomass was small compared to the variability noted among streams and between watersheds. Principal component analysis (PCA) of PLFA profiles showed that microbial community structure displayed a distinct watershed-level biogeography, as well as variation along a stream order gradient. Chapter 3 demonstrated that benthic microbial biomass was seasonally dynamic and significantly correlated to a combination of high and low flood pulse counts, variability in daily flow and DOC concentration in the White Clay Creek. Additionally, the seasonal pattern of variation observed in microbial community structure was as a result of shift between the ratios of prokaryotic to eukaryotic component of the community. This shift was significantly correlated with seasonal changes in median daily flow, high and low flood pulse counts, DOC concentrations and water temperature. Compound-specific 13C analysis of PLFA showed that both bacterial and microeukaryotic stable carbon isotope ratios were heaviest in the spring and lightest in autumn or winter. Bacterial lipids were isotopically depleted on average by 2 - 5 / relative to δ13C of total organic carbon suggesting bacterial consumption of allochthonous organic matter, and enriched relative to δ13C algae-derived carbon source. In Chapter 4, heterotrophic microbes that metabolize humic DOM in a third-order stream were identified through trace-additions of 13C-labeled tree tissue leachate (13C-DOC) into stream sediment mesocosms. Microbial community structure was assessed using PLFA biomarkers, and metabolically active members were identified through 13C-PLFA analysis (PLFA-SIP). Comparison by PCA of the microbial communities in stream sediments and stream sediments incubated in both the presence and absence of 13C-DOC showed our mesocosm-based experimental design as sufficiently robust to investigate the utilization of 13C-DOC by sediment microbial communities. After 48 hours of incubation, PLFA-SIP identified heterotrophic α, β, and γ- proteobacteria and facultative anaerobic bacteria as the organisms primarily responsible for humic DOC consumption in streams and heterotrophic microeucaryotes as their predators. The evidence presented in this study shows a complex relationship between microbial community structure, environmental heterogeneity and utilization of humic DOC, indicating that humic DOC quality and quantity along with other hydro-ecological variables should be considered among the important factors that structure benthic microbial communities in lotic ecosystems.

Hydrological Regulation on Dissolved Organic Carbon Transport from Agricultural and Forest Soils to Streams

Hydrological Regulation on Dissolved Organic Carbon Transport from Agricultural and Forest Soils to Streams PDF Author: Yi Mei
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 135

Book Description


Dissolved Organic Carbon and Disinfection By-product Precursors in Waters of the Chickahominy River Basin, Virginia, and Implications for Public Supply

Dissolved Organic Carbon and Disinfection By-product Precursors in Waters of the Chickahominy River Basin, Virginia, and Implications for Public Supply PDF Author: Gary K. Speiran
Publisher:
ISBN:
Category : Disinfection and disinfectants
Languages : en
Pages : 74

Book Description


Watershed Export of Dissolved Organic Matter in Response to Anthropogenic and Hydroclimatic Drivers in Subtropical Streams and Rivers

Watershed Export of Dissolved Organic Matter in Response to Anthropogenic and Hydroclimatic Drivers in Subtropical Streams and Rivers PDF Author: Shuo Chen
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Book Description
Dissolved organic matter (DOM) is an assemblage of heterogeneous organic compounds that play important roles in terrestrial and aquatic ecosystems. In this dissertation, I investigated changes in the amount, source, composition, lability, and ecological functions of stream water DOM in response to agricultural land use, hydrological events, and downstream transport and transformation in the southeastern United States. The dissertation includes three stand-alone studies presented in Chapters 2, 3 and 4, respectively. In Chapter 2, I evaluated the effects of hurricane-induced storm events on the quantity and quality of DOM exported from ten watersheds of various physical and land-use characteristics within five Gulf and South Atlantic states. We found that large storms can significantly enhance the concentrations and yields of terrestrially-derived dissolved organic carbon (DOC) and nutrients in streams and rivers but decrease the percentage bioreactive DOC. This study demonstrates that extreme weather and climate events can lead to rapid, ecosystem-level disturbances that significantly shift energy and nutrient availability within drainage networks. The objective of Chapter 3 was to quantify the relative importance of agricultural land use and natural hydroclimatic drivers in affecting the quality and quantity of DOM in a group of 15 streams draining watersheds of a gradient of agricultural land use. The partial least square path modeling (PLS-PM) identified that agricultural land use increased stream water DOM quantity primarily through increasing allochthonous carbon sources. This study demonstrates that structural equation modeling is a powerful tool that should be more widely adopted to distinguish among multiple drivers and mechanisms regulating freshwater biogeochemistry. Chapter 4 investigated the longitudinal transformations of DOM in relation to ecosystem metabolism along a fluvial section including 3rd order, 7th and 8th order streams. From upstream to downstream, DOC concentrations and the relative contributions of freshly-produced DOM increased. The gross primary productivity was positively correlated with the contributions of autochthonous DOM, yet the ecosystem respiration did not vary with the quantity or quality of DOM. This study highlights the complexity of DOM transformations in relation to stream metabolism along the river continuum. Collectively, the three independent but connected studies reveal the complexity and sensitivity of inland water DOM in response to hydroclimatic and anthropogenic drivers. The findings provide new insights into potential shifts in energy and substrates exported across the terrestrial-aquatic boundary due to human activities and climate change and how these shifts can alter water quality and fluvial biogeochemical functions.

Riparian Areas

Riparian Areas PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309082951
Category : Science
Languages : en
Pages : 449

Book Description
The Clean Water Act (CWA) requires that wetlands be protected from degradation because of their important ecological functions including maintenance of high water quality and provision of fish and wildlife habitat. However, this protection generally does not encompass riparian areasâ€"the lands bordering rivers and lakesâ€"even though they often provide the same functions as wetlands. Growing recognition of the similarities in wetland and riparian area functioning and the differences in their legal protection led the NRC in 1999 to undertake a study of riparian areas, which has culminated in Riparian Areas: Functioning and Strategies for Management. The report is intended to heighten awareness of riparian areas commensurate with their ecological and societal values. The primary conclusion is that, because riparian areas perform a disproportionate number of biological and physical functions on a unit area basis, restoration of riparian functions along America's waterbodies should be a national goal.

Microbial and Photochemical Cycling of Dissolved Organic Matter in Boreal Headwater Streams

Microbial and Photochemical Cycling of Dissolved Organic Matter in Boreal Headwater Streams PDF Author: Doreen Franke
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Dissolved organic matter (DOM) is a key global energy source and carbon reservoir that links terrestrial and aquatic biogeochemical cycling. Allochthonous organic matter is abundant in boreal headwater streams, and environmental changes such as variation in nutrient availability and changes to watershed landscape composition have great potential for altering the DOM source, its composition and cycling. This dissertation focuses on two of the main drivers of aquatic carbon and nutrient cycling: the photochemical and the microbial processing of DOM in boreal headwater streams; specifically (i) how the photochemical lability of DOM varies between reaches within headwater streams, among headwater streams and an associated large river reach, (ii) how stream biofilm mineralization may be regulated by watershed organic matter source and composition, increased labile carbon, nitrogen, and phosphorus availability, and (iii) whether algal carbon sources are important to supporting stream biofilms and if such sources influence the use of allochthonous DOM in nutrient-enriched streams. The results suggest changes in landscape and nutrient availability have the potential to alter the photochemical and biogeochemical cycling of DOM. DOM photolability was increased upstream relative to downstream and the river DOM. This may be due to differences in DOM source and composition, and suggests losses in photolabile DOM downstream and in the lower reaches of the watershed. The phototransformation of DOM into low molecular weight compounds and nutrients such as ammonium is likely relevant to the carbon and nutrient cycling in boreal watersheds. Results here further suggest that boreal stream biofilm mineralization of DOM is regulated by watershed DOM source and composition. Labile carbon sources, such as algal inputs, may also play an important role in regulating DOM mineralization and the processing of nutrients by these biofilms. In nutrient-impacted streams, where primary production is high relative to nutrientpoor streams, biofilms may be stimulated to incorporate algal carbon sources. Yet in the boreal streams studied here, added labile carbon rarely enhanced the mineralization of extant stream DOM suggesting autotrophic-heterotrophic interactions represent a more important priming effect relative to changing DOM source in boreal streams.