Understanding Neural Networks: Advanced networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Understanding Neural Networks: Advanced networks PDF full book. Access full book title Understanding Neural Networks: Advanced networks by Maureen Caudill. Download full books in PDF and EPUB format.

Understanding Neural Networks: Advanced networks

Understanding Neural Networks: Advanced networks PDF Author: Maureen Caudill
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 388

Book Description
Understanding Neural Networks is a textbook and workbook that provides an interactive learning environment. With or without the aid of a classroom instructor, it allows students and other users to learn about neural networks while gaining practical, hands-on experience with all of the leading network models. Each model is presented as realistically as possible. Also included are chapter exercises and questions, many with illustrations.

Understanding Neural Networks: Advanced networks

Understanding Neural Networks: Advanced networks PDF Author: Maureen Caudill
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 388

Book Description
Understanding Neural Networks is a textbook and workbook that provides an interactive learning environment. With or without the aid of a classroom instructor, it allows students and other users to learn about neural networks while gaining practical, hands-on experience with all of the leading network models. Each model is presented as realistically as possible. Also included are chapter exercises and questions, many with illustrations.

Neural Networks and Deep Learning

Neural Networks and Deep Learning PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512

Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Advanced Algorithms for Neural Networks

Advanced Algorithms for Neural Networks PDF Author: Timothy Masters
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 456

Book Description
This is one of the first books to offer practical in-depth coverage of the Probabilistic Neural Network (PNN) and several other neural nets and their related algorithms critical to solving some of today's toughest real-world computing problems. Includes complete C++ source code for basic and advanced applications.

Artificial Neural Networks

Artificial Neural Networks PDF Author: Kevin L. Priddy
Publisher: SPIE Press
ISBN: 9780819459879
Category : Computers
Languages : en
Pages : 184

Book Description
This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.

Understanding Ninety-nine Percent of Artificial Neural Networks

Understanding Ninety-nine Percent of Artificial Neural Networks PDF Author: Marcello Bosque
Publisher: iUniverse
ISBN: 0595219969
Category : Neural networks (Computer science)
Languages : en
Pages : 147

Book Description


Understanding Neural Networks: Advanced networks

Understanding Neural Networks: Advanced networks PDF Author: Maureen Caudill
Publisher:
ISBN: 9780262530996
Category : Neural networks (Computer science)
Languages : en
Pages : 309

Book Description


The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Neural Networks

Neural Networks PDF Author: Raul Rojas
Publisher: Springer Science & Business Media
ISBN: 3642610684
Category : Computers
Languages : en
Pages : 511

Book Description
Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.

Understanding Neural Networks and Fuzzy Logic

Understanding Neural Networks and Fuzzy Logic PDF Author: Stamatios V. Kartalopoulos
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 240

Book Description
Understand the fundamentals of the emerging field of fuzzy neural networks, their applications and the most used paradigms with this carefully organized state-of-the-art textbook. Previously tested at a number of noteworthy conference tutorials, the simple numerical examples presented in this book provide excellent tools for progressive learning. UNDERSTANDING NEURAL NETWORKS AND FUZZY LOGIC offers a simple presentation and bottom-up approach that is ideal for working professional engineers, undergraduates, medical/biology majors, and anyone with a nonspecialist background. Sponsored by: IEEE Neural Networks Council

Advanced Models of Neural Networks

Advanced Models of Neural Networks PDF Author: Gerasimos G. Rigatos
Publisher: Springer
ISBN: 3662437643
Category : Technology & Engineering
Languages : en
Pages : 296

Book Description
This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.