Stochastic Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Systems PDF full book. Access full book title Stochastic Systems by Mircea Grigoriu. Download full books in PDF and EPUB format.

Stochastic Systems

Stochastic Systems PDF Author: Mircea Grigoriu
Publisher: Springer Science & Business Media
ISBN: 1447123271
Category : Technology & Engineering
Languages : en
Pages : 534

Book Description
Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.

Stochastic Systems

Stochastic Systems PDF Author: Mircea Grigoriu
Publisher: Springer Science & Business Media
ISBN: 1447123271
Category : Technology & Engineering
Languages : en
Pages : 534

Book Description
Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.

Uncertainty Quantification

Uncertainty Quantification PDF Author: Christian Soize
Publisher: Springer
ISBN: 3319543393
Category : Computers
Languages : en
Pages : 344

Book Description
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling

Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling PDF Author: José Eduardo Souza De Cursi
Publisher: Springer Nature
ISBN: 3030536696
Category : Technology & Engineering
Languages : en
Pages : 472

Book Description
This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mécanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).

Uncertainty Quantification and Stochastic Modeling with Matlab

Uncertainty Quantification and Stochastic Modeling with Matlab PDF Author: Eduardo Souza de Cursi
Publisher: Elsevier
ISBN: 0081004710
Category : Mathematics
Languages : en
Pages : 457

Book Description
Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab® illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study. - Discusses the main ideas of Stochastic Modeling and Uncertainty Quantification using Functional Analysis - Details listings of Matlab® programs implementing the main methods which complete the methodological presentation by a practical implementation - Construct your own implementations from provided worked examples

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification PDF Author: Roger Ghanem
Publisher: Springer
ISBN: 9783319123844
Category : Mathematics
Languages : en
Pages : 0

Book Description
The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Multifaceted Uncertainty Quantification

Multifaceted Uncertainty Quantification PDF Author: Isaac Elishakoff
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111354237
Category : Technology & Engineering
Languages : en
Pages : 384

Book Description
The book exposes three alternative and competing approaches to uncertainty analysis in engineering. It is composed of some essays on various sub-topics like random vibrations, probabilistic reliability, fuzzy-sets-based analysis, unknown-but-bounded variables, stochastic linearization, possible difficulties with stochastic analysis of structures.

Numerical Methods for Stochastic Computations

Numerical Methods for Stochastic Computations PDF Author: Dongbin Xiu
Publisher: Princeton University Press
ISBN: 1400835348
Category : Mathematics
Languages : en
Pages : 142

Book Description
The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples

Multiscale Modeling and Uncertainty Quantification of Materials and Structures

Multiscale Modeling and Uncertainty Quantification of Materials and Structures PDF Author: Manolis Papadrakakis
Publisher: Springer
ISBN: 3319063316
Category : Science
Languages : en
Pages : 303

Book Description
This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.

Stochastic Dynamics of Structures

Stochastic Dynamics of Structures PDF Author: Jie Li
Publisher: John Wiley & Sons
ISBN: 0470824255
Category : Technology & Engineering
Languages : en
Pages : 426

Book Description
In Stochastic Dynamics of Structures, Li and Chen present a unified view of the theory and techniques for stochastic dynamics analysis, prediction of reliability, and system control of structures within the innovative theoretical framework of physical stochastic systems. The authors outline the fundamental concepts of random variables, stochastic process and random field, and orthogonal expansion of random functions. Readers will gain insight into core concepts such as stochastic process models for typical dynamic excitations of structures, stochastic finite element, and random vibration analysis. Li and Chen also cover advanced topics, including the theory of and elaborate numerical methods for probability density evolution analysis of stochastic dynamical systems, reliability-based design, and performance control of structures. Stochastic Dynamics of Structures presents techniques for researchers and graduate students in a wide variety of engineering fields: civil engineering, mechanical engineering, aerospace and aeronautics, marine and offshore engineering, ship engineering, and applied mechanics. Practicing engineers will benefit from the concise review of random vibration theory and the new methods introduced in the later chapters. "The book is a valuable contribution to the continuing development of the field of stochastic structural dynamics, including the recent discoveries and developments by the authors of the probability density evolution method (PDEM) and its applications to the assessment of the dynamic reliability and control of complex structures through the equivalent extreme-value distribution." —A. H-S. Ang, NAE, Hon. Mem. ASCE, Research Professor, University of California, Irvine, USA "The authors have made a concerted effort to present a responsible and even holistic account of modern stochastic dynamics. Beyond the traditional concepts, they also discuss theoretical tools of recent currency such as the Karhunen-Loeve expansion, evolutionary power spectra, etc. The theoretical developments are properly supplemented by examples from earthquake, wind, and ocean engineering. The book is integrated by also comprising several useful appendices, and an exhaustive list of references; it will be an indispensable tool for students, researchers, and practitioners endeavoring in its thematic field." —Pol Spanos, NAE, Ryon Chair in Engineering, Rice University, Houston, USA

Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3 PDF Author: Sez Atamturktur
Publisher: Springer
ISBN: 3319297546
Category : Technology & Engineering
Languages : en
Pages : 366

Book Description
Model Validation and Uncertainty Quantifi cation, Volume 3. Proceedings of the 34th IMAC, A Conference and Exposition on Dynamics of Multiphysical Systems: From Active Materials to Vibroacoustics, 2016, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. Th e collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: • Uncertainty Quantifi cation & Model Validation • Uncertainty Propagation in Structural Dynamics • Bayesian & Markov Chain Monte Carlo Methods • Practical Applications of MVUQ • Advances in MVUQ & Model Updating • Robustness in Design & Validation • Verifi cation & Validation Methods