Uncertainty-Based Information

Uncertainty-Based Information PDF Author: George Klir
Publisher: Springer Science & Business Media
ISBN: 9783790812428
Category : Mathematics
Languages : en
Pages : 196

Book Description
Information is precious. It reduces our uncertainty in making decisions. Knowledge about the outcome of an uncertain event gives the possessor an advantage. It changes the course of lives, nations, and history itself. Information is the food of Maxwell's demon. His power comes from know ing which particles are hot and which particles are cold. His existence was paradoxical to classical physics and only the realization that information too was a source of power led to his taming. Information has recently become a commodity, traded and sold like or ange juice or hog bellies. Colleges give degrees in information science and information management. Technology of the computer age has provided access to information in overwhelming quantity. Information has become something worth studying in its own right. The purpose of this volume is to introduce key developments and results in the area of generalized information theory, a theory that deals with uncertainty-based information within mathematical frameworks that are broader than classical set theory and probability theory. The volume is organized as follows.

Uncertainty-Based Information

Uncertainty-Based Information PDF Author: George J. Klir
Publisher: Physica
ISBN: 3790818690
Category : Mathematics
Languages : en
Pages : 180

Book Description
Information is precious. It reduces our uncertainty in making decisions. Knowledge about the outcome of an uncertain event gives the possessor an advantage. It changes the course of lives, nations, and history itself. Information is the food of Maxwell's demon. His power comes from know ing which particles are hot and which particles are cold. His existence was paradoxical to classical physics and only the realization that information too was a source of power led to his taming. Information has recently become a commodity, traded and sold like or ange juice or hog bellies. Colleges give degrees in information science and information management. Technology of the computer age has provided access to information in overwhelming quantity. Information has become something worth studying in its own right. The purpose of this volume is to introduce key developments and results in the area of generalized information theory, a theory that deals with uncertainty-based information within mathematical frameworks that are broader than classical set theory and probability theory. The volume is organized as follows.

Uncertainty and Information

Uncertainty and Information PDF Author: George J. Klir
Publisher: John Wiley & Sons
ISBN: 0471755567
Category : Technology & Engineering
Languages : en
Pages : 499

Book Description
Deal with information and uncertainty properly and efficientlyusing tools emerging from generalized information theory Uncertainty and Information: Foundations of Generalized InformationTheory contains comprehensive and up-to-date coverage of resultsthat have emerged from a research program begun by the author inthe early 1990s under the name "generalized information theory"(GIT). This ongoing research program aims to develop a formalmathematical treatment of the interrelated concepts of uncertaintyand information in all their varieties. In GIT, as in classicalinformation theory, uncertainty (predictive, retrodictive,diagnostic, prescriptive, and the like) is viewed as amanifestation of information deficiency, while information isviewed as anything capable of reducing the uncertainty. A broadconceptual framework for GIT is obtained by expanding theformalized language of classical set theory to include moreexpressive formalized languages based on fuzzy sets of varioustypes, and by expanding classical theory of additive measures toinclude more expressive non-additive measures of varioustypes. This landmark book examines each of several theories for dealingwith particular types of uncertainty at the following fourlevels: * Mathematical formalization of the conceived type ofuncertainty * Calculus for manipulating this particular type ofuncertainty * Justifiable ways of measuring the amount of uncertainty in anysituation formalizable in the theory * Methodological aspects of the theory With extensive use of examples and illustrations to clarify complexmaterial and demonstrate practical applications, generoushistorical and bibliographical notes, end-of-chapter exercises totest readers' newfound knowledge, glossaries, and an Instructor'sManual, this is an excellent graduate-level textbook, as well as anoutstanding reference for researchers and practitioners who dealwith the various problems involving uncertainty and information. AnInstructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 3642767028
Category : Computers
Languages : en
Pages : 495

Book Description
The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

A Methodology for Uncertainty in Knowledge-Based Systems

A Methodology for Uncertainty in Knowledge-Based Systems PDF Author: Kurt Weichselberger
Publisher: Lecture Notes in Artificial Intelligence
ISBN:
Category : Computers
Languages : en
Pages : 154

Book Description
In this book the consequent use of probability theory is proposed for handling uncertainty in expert systems. It is shown that methods violating this suggestion may have dangerous consequences (e.g., the Dempster-Shafer rule and the method used in MYCIN). The necessity of some requirements for a correct combining of uncertain information in expert systems is demonstrated and suitable rules are provided. The possibility is taken into account that interval estimates are given instead of exact information about probabilities. For combining information containing interval estimates rules are provided which are useful in many cases.

Uncertainty Management in Information Systems

Uncertainty Management in Information Systems PDF Author: Amihai Motro
Publisher: Springer Science & Business Media
ISBN: 1461562457
Category : Computers
Languages : en
Pages : 473

Book Description
As its title suggests, "Uncertainty Management in Information Systems" is a book about how information systems can be made to manage information permeated with uncertainty. This subject is at the intersection of two areas of knowledge: information systems is an area that concentrates on the design of practical systems that can store and retrieve information; uncertainty modeling is an area in artificial intelligence concerned with accurate representation of uncertain information and with inference and decision-making under conditions infused with uncertainty. New applications of information systems require stronger capabilities in the area of uncertainty management. Our hope is that lasting interaction between these two areas would facilitate a new generation of information systems that will be capable of servicing these applications. Although there are researchers in information systems who have addressed themselves to issues of uncertainty, as well as researchers in uncertainty modeling who have considered the pragmatic demands and constraints of information systems, to a large extent there has been only limited interaction between these two areas. As the subtitle, "From Needs to Solutions," indicates, this book presents view points of information systems experts on the needs that challenge the uncer tainty capabilities of present information systems, and it provides a forum to researchers in uncertainty modeling to describe models and systems that can address these needs.

Modeling Uncertainty with Fuzzy Logic

Modeling Uncertainty with Fuzzy Logic PDF Author: Asli Celikyilmaz
Publisher: Springer
ISBN: 3540899243
Category : Computers
Languages : en
Pages : 443

Book Description
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.

Uncertainty Theory

Uncertainty Theory PDF Author: Baoding Liu
Publisher: Springer
ISBN: 3540731652
Category : Technology & Engineering
Languages : en
Pages : 263

Book Description
This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.

Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference

Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference PDF Author: Michel Grabisch
Publisher: Springer Science & Business Media
ISBN: 9401584494
Category : Business & Economics
Languages : en
Pages : 354

Book Description
With the vision that machines can be rendered smarter, we have witnessed for more than a decade tremendous engineering efforts to implement intelligent sys tems. These attempts involve emulating human reasoning, and researchers have tried to model such reasoning from various points of view. But we know precious little about human reasoning processes, learning mechanisms and the like, and in particular about reasoning with limited, imprecise knowledge. In a sense, intelligent systems are machines which use the most general form of human knowledge together with human reasoning capability to reach decisions. Thus the general problem of reasoning with knowledge is the core of design methodology. The attempt to use human knowledge in its most natural sense, that is, through linguistic descriptions, is novel and controversial. The novelty lies in the recognition of a new type of un certainty, namely fuzziness in natural language, and the controversality lies in the mathematical modeling process. As R. Bellman [7] once said, decision making under uncertainty is one of the attributes of human intelligence. When uncertainty is understood as the impossi bility to predict occurrences of events, the context is familiar to statisticians. As such, efforts to use probability theory as an essential tool for building intelligent systems have been pursued (Pearl [203], Neapolitan [182)). The methodology seems alright if the uncertain knowledge in a given problem can be modeled as probability measures.

Design Decisions Under Uncertainty with Limited Information

Design Decisions Under Uncertainty with Limited Information PDF Author: Efstratios Nikolaidis
Publisher: CRC Press
ISBN: 9781138115095
Category :
Languages : en
Pages : 538

Book Description
Today's business environment involves design decisions with significant uncertainty. To succeed, decision-makers should replace deterministic methods with a risk-based approach that accounts for the decision maker¿s risk tolerance. In many problems, it is impractical to collect data because rare or one-time events are involved. Therefore, we need a methodology to model uncertainty and make choices when we have limited information. This methodology must use all available information and rely only on assumptions that are supported by evidence. This book explains theories and tools to represent uncertainty using both data and expert judgment. It teaches the reader how to make design or business decisions when there is limited information with these tools. Readers will learn a structured, risk-based approach, which is based on common sense principles, for design and business decisions. These decisions are consistent with the decision-maker¿s risk attitude. The book is exceptionally suited as educational material because it uses everyday language and real-life examples to elucidate concepts. It demonstrates how these concepts touch our lives through many practical examples, questions and exercises. These are designed to help students learn that first they should understand a problem and then establish a strategy for solving it, instead of using trial-and-error approaches. This volume is intended for undergraduate and graduate courses in mechanical, civil, industrial, aerospace, and ocean engineering and for researchers and professionals in these disciplines. It will also benefit managers and students in business administration who want to make good decisions with limited information.