Uncertainty Analysis and Reservoir Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Uncertainty Analysis and Reservoir Modeling PDF full book. Access full book title Uncertainty Analysis and Reservoir Modeling by Y. Zee Ma. Download full books in PDF and EPUB format.

Uncertainty Analysis and Reservoir Modeling

Uncertainty Analysis and Reservoir Modeling PDF Author: Y. Zee Ma
Publisher: AAPG
ISBN: 0891813780
Category : Science
Languages : en
Pages : 329

Book Description


Uncertainty Analysis and Reservoir Modeling

Uncertainty Analysis and Reservoir Modeling PDF Author: Y. Zee Ma
Publisher: AAPG
ISBN: 0891813780
Category : Science
Languages : en
Pages : 329

Book Description


Uncertainty Analysis and Reservoir Modeling

Uncertainty Analysis and Reservoir Modeling PDF Author: Y. Zee Ma
Publisher: AAPG
ISBN: 0891813780
Category : Science
Languages : en
Pages : 329

Book Description


Reservoir Model Design

Reservoir Model Design PDF Author: Philip Ringrose
Publisher: Springer
ISBN: 9400754973
Category : Science
Languages : en
Pages : 260

Book Description
This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, production mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. Audience: The main audience for this book is the community of applied geoscientists and engineers involved in the development and use of subsurface fluid resources. The book is suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. · Provides practical advice and guidelines for users of 3D reservoir modelling packages · Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling · Covers rock modelling, property modelling, upscaling and uncertainty handling · Encompasses clastic, carbonate and fractured reservoirs

Reservoir Modelling

Reservoir Modelling PDF Author: Steve Cannon
Publisher: John Wiley & Sons
ISBN: 1119313465
Category : Science
Languages : en
Pages : 328

Book Description
The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author — a noted practitioner in the field — captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: Offers a practical guide to the use of data to build a successful reservoir model Draws on the latest advances in 3-D modelling software Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling PDF Author: Y. Z. Ma
Publisher: Springer
ISBN: 3030178609
Category : Technology & Engineering
Languages : en
Pages : 640

Book Description
Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.

Geostatistical Reservoir Modeling

Geostatistical Reservoir Modeling PDF Author: Michael J. Pyrcz
Publisher: Oxford University Press
ISBN: 0199358834
Category : Mathematics
Languages : en
Pages : 449

Book Description
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.

Reservoir Modelling

Reservoir Modelling PDF Author: Steve Cannon
Publisher:
ISBN: 9781523119202
Category : Hydraulic structures
Languages : en
Pages :

Book Description
The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author - a noted practitioner in the field - captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: -Offers a practical guide to the use of data to build a successful reservoir model -Draws on the latest advances in 3-D modelling software -Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs -Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation -Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.

Experimental Design in Petroleum Reservoir Studies

Experimental Design in Petroleum Reservoir Studies PDF Author: Mohammad Jamshidnezhad
Publisher: Gulf Professional Publishing
ISBN: 0128030712
Category : Technology & Engineering
Languages : en
Pages : 187

Book Description
One of the main duties for reservoir engineers is reservoir study, which starts when a reservoir is explored and it continues until the reservoir abandonment. Reservoir study is a continual process and due to various reasons such as complexity at the surface and limited data, there are many uncertainties in reservoir modelling and characterization causing difficulties in reasonable history-matching and prediction phases of study. Experimental Design in Petroleum Reservoir Studies concentrates on experimental design, a trusted method in reservoir management, to analyze and take the guesswork out of the uncertainties surrounding the underdeveloped reservoir. Case studies from the Barnett shale and fractured reservoirs in the Middle East are just some of the practical examples included. Other relevant discussions on uncertainty in PVT, field performance data, and relevant outcomes of experimental design all help you gain insight into how better data can improve measurement tools, your model, and your reservoir assets. Apply the practical knowledge and know-how now with real-world case studies included Gain confidence in deviating uncertain parameters surrounding the underdeveloped reservoir with a focus on application of experimental design Alleviate some of the guesswork in history-matching and prediction phrases with explanations on uncertainty analysis

Reservoir Model Design

Reservoir Model Design PDF Author: Philip Ringrose
Publisher: Springer Nature
ISBN: 3030701638
Category : Science
Languages : en
Pages : 322

Book Description
This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types, and for a range of fluid systems – oil, gas and CO2, production and injection, and effects of different mobility ratios. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, displacement mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. The second edition updates the existing sections and adds sections on the following topics: · A new chapter on modelling for CO2 storage · A new chapter on modelling workflows · An extended chapter on fractured reservoir modelling · An extended chapter on multi-scale modelling · An extended chapter on the quantification of uncertainty · A revised section on the future of modelling based on recently published papers by the authors The main audience for this book is the community of applied geoscientists and engineers involved in understanding fluid flow in the subsurface: whether for the extraction of oil or gas or the injection of CO2 or the subsurface storage of energy in general. We will always need to understand how fluids move in the subsurface and we will always require skills to model these quantitatively. The second edition of this reference book therefore aims to highlight the modelling skills developed for the current energy industry which will also be required for the energy transition of the future. The book is aimed at technical-professional practitioners in the energy industry and is also suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. • Provides practical advice and guidelines for users of 3D reservoir modelling packages • Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling • Covers rock modelling, property modelling, upscaling, fluid flow and uncertainty handling • Encompasses clastic, carbonate and fractured reservoirs • Applies to multi-fluid cases and applications: hydrocarbons and CO2, production and storage; rewritten for use in the Energy Transition.

Quantifying Uncertainty in Subsurface Systems

Quantifying Uncertainty in Subsurface Systems PDF Author: Céline Scheidt
Publisher: John Wiley & Sons
ISBN: 1119325838
Category : Science
Languages : en
Pages : 306

Book Description
Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources