Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization PDF full book. Access full book title Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization by Chi-hau Chen. Download full books in PDF and EPUB format.

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization PDF Author: Chi-hau Chen
Publisher: World Scientific
ISBN: 9812704094
Category : Medical
Languages : en
Pages : 682

Book Description
Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization PDF Author: Chi-hau Chen
Publisher: World Scientific
ISBN: 9812704094
Category : Medical
Languages : en
Pages : 682

Book Description
Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322

Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials

Ultrasonic and Electromagnetic NDE for Structure and Material Characterization

Ultrasonic and Electromagnetic NDE for Structure and Material Characterization PDF Author: Tribikram Kundu
Publisher: CRC Press
ISBN: 1466570474
Category : Science
Languages : en
Pages : 890

Book Description
Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and

Ultrasonic Techniques for Fluids Characterization

Ultrasonic Techniques for Fluids Characterization PDF Author: Malcolm J.W. Povey
Publisher: Academic Press
ISBN: 9780125637305
Category : Science
Languages : en
Pages : 232

Book Description
This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Appeals to anyone using ultrasound to study fluids Provides the first detailed description of the ultrasound profiling technique for dispersions Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat Presents the latest ultrasound techniques for particle sizing in concentrated systems Explains new techniques for compressibility measurements in dispersions and fluids, including cell suspensions Contains a detailed treatment of ultrasound scattering theory Written by one of the leading researchers in the field Includes over 350 references to the primary literature

Nondestructive Characterization of Materials

Nondestructive Characterization of Materials PDF Author: Paul Höller
Publisher: Springer Science & Business Media
ISBN: 3642840035
Category : Technology & Engineering
Languages : en
Pages : 894

Book Description
Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.

Ultrasonic Testing of Materials

Ultrasonic Testing of Materials PDF Author: Josef Krautkrämer
Publisher: Springer Science & Business Media
ISBN: 3662023571
Category : Technology & Engineering
Languages : en
Pages : 678

Book Description
The amendments of this third English edition with respect to the second one concern beside some printing errors the replacement of some pictures in part D by more modern ones and updating the list of stand ards to the state of the fourth German edition. J OSEF KRAUTKRÄMER Cologne, January 1983 Preface to the Second Edition This seeond English edition is based on the third German edition. In view of most recent teehnologieal advanees it has beeome neeessary in many instanees to supplement the seeond German edition and to revise some parts completely. In addition to piezo-eleetric methods, others are now also extensively diseussed in Chapter 8. As for the intensity method, ultrasonie holo graphy is treated in the new Seetion 9. 4. In Part B, for reasons of syste maties, the resonanee method has been ineluded under transit-time methods. It appeared neeessary to elaborate in greater detail the defini tion of the properties of pulse-echo testing equipment and their measure ments (10. 4). The more recent findings of pulse speetroscopy (5. 6) and sound-emission analysis (12) are mentioned only in passing because their significanee is still controversial. Apart from numerous additions, partieularly those coneerning automatie testing installations, Part C also eontains a new chapter whieh deals with tests on nu eIe ar reactors (28), as weIl as abrief diseussion of surfaee-hardness tests (32. 4). It beeame impossible to include a critieal analysis of the principal standards in Chapter 33.

Ultrasonic Nondestructive Testing of Materials

Ultrasonic Nondestructive Testing of Materials PDF Author: Karl-Jörg Langenberg
Publisher: CRC Press
ISBN: 1439855900
Category : Science
Languages : en
Pages : 756

Book Description
This book features a comprehensive discussion of the mathematical foundations of ultrasonic nondestructive testing of materials. The authors include a brief description of the theory of acoustic and electromagnetic fields to underline the similarities and differences with respect to elastodynamics. They also cover vector, elastic plane, and Rayleigh surface waves as well as ultrasonic beams, inverse scattering, and ultrasonic nondestructive imaging. A coordinate-free notation system is used that is easier to understand and navigate than standard index notation.

Ultrasonic Materials Characterization

Ultrasonic Materials Characterization PDF Author: Harold Berger
Publisher:
ISBN:
Category : Ultrasonic testing
Languages : en
Pages : 680

Book Description


Ultrasound for Material Characterization and Processing

Ultrasound for Material Characterization and Processing PDF Author: Francesca Lionetto
Publisher: Mdpi AG
ISBN: 9783036517100
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
Ultrasonic waves are nowadays used for multiple purposes including both low-intensity/high frequency and high-intensity/low-frequency ultrasound. Low-intensity ultrasound transmits energy through the medium in order to obtain information about the medium or to convey information through the medium. It is successfully used in non-destructive inspection, ultrasonic dynamic analysis, ultrasonic rheology, ultrasonic spectroscopy of materials, process monitoring, applications in civil engineering, aerospace and geological materials and structures, and in the characterization of biological media. Nowadays, it is an essential tool for assessing metals, plastics, aerospace composites, wood, concrete, and cement. High-intensity ultrasound deliberately affects the propagation medium through the high local temperatures and pressures generated. It is used in industrial processes such as welding, cleaning, emulsification, atomization, etc.; chemical reactions and reactor induced by ultrasonic waves; synthesis of organic and inorganic materials; microstructural effects; heat generation; accelerated material characterization by ultrasonic fatigue testing; food processing; and environmental protection. This book collects eleven papers, one review, and ten research papers with the aim to present recent advances in ultrasonic wave propagation applied for the characterization or the processing of materials. Both fundamental science and applications of ultrasound in the field of material characterization and material processing have been gathered.

Ultrasonic Transducer Materials

Ultrasonic Transducer Materials PDF Author: O. E. Mattiat
Publisher: Springer Science & Business Media
ISBN: 1475704682
Category : Technology & Engineering
Languages : en
Pages : 194

Book Description
In recent years remarkable progress has been made in the development of materials for ultrasonic transducers. There is a continuing trend towards increasingly higher frequency ranges for the application of ultrasonic trans ducers in modern technology. The progress in this area has been especially rapid and articles and papers on the subject are scattered over numerous technical and scientific journals in this country and abroad. Although good books have appeared on ultrasonics in general and ultrasonic transducers in particular in which, for obvious reasons, materials play an important part, no comprehensive treatise is available that represents the state-of-the-art on modern ultrasonic transducer materials. This book intends to fill a need for a thorough review of the subject. Not all materials are covered of which, theoretically, ultrasonic trans ducers could be made but those that are or may be of technical impor tance and which have inherent electro acoustic transducer properties, i.e., materials that are either magnetostrictive, electrostrictive, or piezoelectric. The book has been devided into three parts which somewhat reflect the historic development of ultrasonic transducer materials for important tech nical application. Chapter 1 deals with magnetostrictive materials, magnetostrictive met als and their alloys, and magnetostrictive ferrites (polycrystalline ceramics). The metals are useful especially in cases where ruggednes of the transducers are of overriding importance and in the lower ultrasonic frequency range.