Author: Carlos Silva
Publisher:
ISBN:
Category :
Languages : en
Pages : 356
Book Description
Ultrafast Spectroscopy of Prototypes for Electronically Nonadiabatic Dynamics in Solution Chemistry
American Doctoral Dissertations
Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 784
Book Description
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 784
Book Description
Theoretical and Computational Photochemistry
Author: García Iriepa Cristina
Publisher: Elsevier
ISBN: 0323972225
Category : Medical
Languages : en
Pages : 520
Book Description
Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches provides a comprehensive overview of photoactive systems and photochemical processes. After an introduction to photochemistry, the book discusses the key computational chemistry methods applied to the study of light-induced processes over the past decade, and further outlines recent research topics to which these methods have been applied. By discussing the synergy between experimental and computational data, the book highlights how theoretical studies could facilitate understanding experimental findings. This helpful guide is for both theoretical chemists and experimental photochemistry researchers interested in utilizing computational photochemistry methods for their own work. - Reviews the fundamentals of photochemistry, helping those new to the field in understanding key concepts - Provides detailed guidance and comparison of computational and theoretical methods, highlighting the suitability of each method for different case studies - Outlines current applications to encourage discussion of the synergy between experimental and computational data, and inspiring further application of these methods to other photochemical processes
Publisher: Elsevier
ISBN: 0323972225
Category : Medical
Languages : en
Pages : 520
Book Description
Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches provides a comprehensive overview of photoactive systems and photochemical processes. After an introduction to photochemistry, the book discusses the key computational chemistry methods applied to the study of light-induced processes over the past decade, and further outlines recent research topics to which these methods have been applied. By discussing the synergy between experimental and computational data, the book highlights how theoretical studies could facilitate understanding experimental findings. This helpful guide is for both theoretical chemists and experimental photochemistry researchers interested in utilizing computational photochemistry methods for their own work. - Reviews the fundamentals of photochemistry, helping those new to the field in understanding key concepts - Provides detailed guidance and comparison of computational and theoretical methods, highlighting the suitability of each method for different case studies - Outlines current applications to encourage discussion of the synergy between experimental and computational data, and inspiring further application of these methods to other photochemical processes
Ab Initio Molecular Dynamics
Author: Dominik Marx
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Conical Intersections
Author: Wolfgang Domcke
Publisher: World Scientific
ISBN: 9814313440
Category : Science
Languages : en
Pages : 769
Book Description
The concept of adiabatic electronic potential-energy surfaces, defined by the Born?Oppenheimer approximation, is fundamental to our thinking about chemical processes. Recent computational as well as experimental studies have produced ample evidence that the so-called conical intersections of electronic energy surfaces, predicted by von Neumann and Wigner in 1929, are the rule rather than the exception in polyatomic molecules. It is nowadays increasingly recognized that conical intersections play a key mechanistic role in chemical reaction dynamics. This volume provides an up-to-date overview of the multi-faceted research on the role of conical intersections in photochemistry and photobiology, including basic theoretical concepts, novel computational strategies as well as innovative experiments. The contents and discussions will be of value to advanced students and researchers in photochemistry, molecular spectroscopy and related areas.
Publisher: World Scientific
ISBN: 9814313440
Category : Science
Languages : en
Pages : 769
Book Description
The concept of adiabatic electronic potential-energy surfaces, defined by the Born?Oppenheimer approximation, is fundamental to our thinking about chemical processes. Recent computational as well as experimental studies have produced ample evidence that the so-called conical intersections of electronic energy surfaces, predicted by von Neumann and Wigner in 1929, are the rule rather than the exception in polyatomic molecules. It is nowadays increasingly recognized that conical intersections play a key mechanistic role in chemical reaction dynamics. This volume provides an up-to-date overview of the multi-faceted research on the role of conical intersections in photochemistry and photobiology, including basic theoretical concepts, novel computational strategies as well as innovative experiments. The contents and discussions will be of value to advanced students and researchers in photochemistry, molecular spectroscopy and related areas.
Chemical Bonding at Surfaces and Interfaces
Author: Anders Nilsson
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Solvent Effects and Chemical Reactivity
Author: Orlando Tapia
Publisher: Springer Science & Business Media
ISBN: 9781402004179
Category : Science
Languages : en
Pages : 396
Book Description
This book presents an up-to-date view of theories, practical methods and applications of solvent effects and chemical reactivity in condensed phases. Subjects treated include continuum solvation models, the theoretical basis for the treatment of solvent effects in density functional theory, Monte Carlo simulations of chemical reactions in solution, DFT molecular dynamics simulations, crossing the transition state in solution, valence bond multi-state approach to chemical reactions in solution, quantum theory of solvent effects and chemical reactions. The approaches taken as well as the resulting findings are discussed in detail, thus covering a large part of the methodology currently used in this field. Audience: This volume will be useful to graduate students in chemistry, physical chemistry and biochemistry, to research workers with a background in quantum chemistry and quantum mechanics, to pure and applied quantum chemists, and to industrial molecular modellers.
Publisher: Springer Science & Business Media
ISBN: 9781402004179
Category : Science
Languages : en
Pages : 396
Book Description
This book presents an up-to-date view of theories, practical methods and applications of solvent effects and chemical reactivity in condensed phases. Subjects treated include continuum solvation models, the theoretical basis for the treatment of solvent effects in density functional theory, Monte Carlo simulations of chemical reactions in solution, DFT molecular dynamics simulations, crossing the transition state in solution, valence bond multi-state approach to chemical reactions in solution, quantum theory of solvent effects and chemical reactions. The approaches taken as well as the resulting findings are discussed in detail, thus covering a large part of the methodology currently used in this field. Audience: This volume will be useful to graduate students in chemistry, physical chemistry and biochemistry, to research workers with a background in quantum chemistry and quantum mechanics, to pure and applied quantum chemists, and to industrial molecular modellers.
Conical Intersections
Author: Wolfgang Domcke
Publisher: World Scientific
ISBN: 9812386726
Category : Science
Languages : en
Pages : 857
Book Description
This invaluable book presents a systematic exposition of the current state of knowledge about conical intersections, which has been elaborated in research papers scattered throughout the chemical physics literature.
Publisher: World Scientific
ISBN: 9812386726
Category : Science
Languages : en
Pages : 857
Book Description
This invaluable book presents a systematic exposition of the current state of knowledge about conical intersections, which has been elaborated in research papers scattered throughout the chemical physics literature.
Molecular Spectroscopy and Quantum Dynamics
Author: Roberto Marquardt
Publisher: Elsevier
ISBN: 0128172355
Category : Science
Languages : en
Pages : 376
Book Description
Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure
Publisher: Elsevier
ISBN: 0128172355
Category : Science
Languages : en
Pages : 376
Book Description
Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure
Quantum Chemistry and Dynamics of Excited States
Author: Leticia González
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.