Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media PDF full book. Access full book title Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media by Andrew T. Ryan. Download full books in PDF and EPUB format.

Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media

Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media PDF Author: Andrew T. Ryan
Publisher:
ISBN: 9781423575689
Category :
Languages : en
Pages : 199

Book Description
In this thesis the results of a systematic investigation into the behavior of ultrashort optical pulses propagating in dispersive media with a Kerr nonlinearity (and intensity-dependent refractive index) are presented. The effect of the nonlinear index is to couple the spatial and temporal behaviors of the optical field together in a process known as spatiotemporal coupling. In the first chapter, a review of the previous work done in describing spatiotemporal coupling is presented as well as a discussion of its relevance to the remaining chapters. Optical wave propagation in general is described by Maxwell's equations. In the second chapter Maxwells equations are used to derive the various forms of the nonlinear Schrodinger equation (NSE) which describe optical wave propagation in the presence of a Kerr nonlinearity. The different forms of the NSE account for different propagation geometries and conditions. The numerical model based on the NSE which is used to derive many of the results in the remainder of the thesis is also described. In chapter three, the numerical model is employed to give a thorough description of the dynamics of the pulse behavior in the presence of spatiotemporal coupling. An explanation of enhanced beam-broadening in self-defocusing media and localized pulse compression in normally dispersive self-focusing media are presented. The remaining two chapters describe experimental conditions under which spatiotemporal coupling may become important. In chapter four, the model is used to describe a means to exploit the ultrafast Kerr nonlinearity to achieve pulse compression with spatial phase modulation. In the fifth and final chapter, the influence of spatiotemporal coupling on Z-scan measurement of the nonlinear refractive index is discussed.

Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media

Ultrafast Spatiotemporal Coupling in Nonlinear Dispersive Media PDF Author: Andrew T. Ryan
Publisher:
ISBN: 9781423575689
Category :
Languages : en
Pages : 199

Book Description
In this thesis the results of a systematic investigation into the behavior of ultrashort optical pulses propagating in dispersive media with a Kerr nonlinearity (and intensity-dependent refractive index) are presented. The effect of the nonlinear index is to couple the spatial and temporal behaviors of the optical field together in a process known as spatiotemporal coupling. In the first chapter, a review of the previous work done in describing spatiotemporal coupling is presented as well as a discussion of its relevance to the remaining chapters. Optical wave propagation in general is described by Maxwell's equations. In the second chapter Maxwells equations are used to derive the various forms of the nonlinear Schrodinger equation (NSE) which describe optical wave propagation in the presence of a Kerr nonlinearity. The different forms of the NSE account for different propagation geometries and conditions. The numerical model based on the NSE which is used to derive many of the results in the remainder of the thesis is also described. In chapter three, the numerical model is employed to give a thorough description of the dynamics of the pulse behavior in the presence of spatiotemporal coupling. An explanation of enhanced beam-broadening in self-defocusing media and localized pulse compression in normally dispersive self-focusing media are presented. The remaining two chapters describe experimental conditions under which spatiotemporal coupling may become important. In chapter four, the model is used to describe a means to exploit the ultrafast Kerr nonlinearity to achieve pulse compression with spatial phase modulation. In the fifth and final chapter, the influence of spatiotemporal coupling on Z-scan measurement of the nonlinear refractive index is discussed.

Ultrafast Phenomena XIV

Ultrafast Phenomena XIV PDF Author: Takayoshi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3540272135
Category : Science
Languages : en
Pages : 914

Book Description
This volume is a collection of papers presented at the Fourteenth International Conference on Ultrafast Phenomena held in Niigata, Japan from July 25-30, 2004. The Ultrafast Phenomena Conferences are held every two years and provide a forum for discussion of the latest results in ultrafast optics and their applications in science and engineering. A total of more than 300 papers were presented, reporting the forefront of research in ultrashort pulse generation and characterization, including new techniques for shortening the duration of laser pulses, for stabilizing their absolute phase, and for improving tenability over broad wavelength ranges, output powers and peak intensities. Ultrafast spectroscopies, particularly time-resolved X-ray and electron diffraction and two-dimensional spectroscopy, continue to give new insights into fundamental processes in physics, chemistry and biology. Control and optimization of the outcome of ultrafast processes represent another important field of research. There are an increasing number of applications of ultrafast methodology in material diagnostics and processing, microscopy and medical imaging. The enthusiasm of the participants, the involvement of many students, the high quality of the papers in both oral and poster sessions made the conference very successful. Many people and organizations made invaluable contributions. The members of the international program committee reviewed the submissions and organized the program. The staff of the Optical Society of America deserves special thanks for making the meeting arrangements and running the meeting smoothly.

Spatio-temporal pulse propagation in nonlinear dispersive optical media

Spatio-temporal pulse propagation in nonlinear dispersive optical media PDF Author: Carsten Brée
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 780

Book Description


Ultrafast Phenomena

Ultrafast Phenomena PDF Author:
Publisher:
ISBN:
Category : Laser pulses, Ultrashort
Languages : en
Pages : 952

Book Description


Ultrafast Phenomena XVI

Ultrafast Phenomena XVI PDF Author: Paul Corkum
Publisher: Springer Science & Business Media
ISBN: 3540959467
Category : Science
Languages : en
Pages : 1031

Book Description
Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

Fundamentals of Photonics

Fundamentals of Photonics PDF Author: Bahaa E. A. Saleh
Publisher: John Wiley & Sons
ISBN: 1119702119
Category : Technology & Engineering
Languages : en
Pages : 2134

Book Description
Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.

Advances in Nonlinear Optics

Advances in Nonlinear Optics PDF Author: Xianfeng Chen
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311030449X
Category : Science
Languages : en
Pages : 382

Book Description
This book presents an overview of the state of the art of the developing topic of nonlinear optics with contributions from leading experts in the field in China, ranging from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. In the past decade, nonlinear optics has evolved into many different branches, depending on the form of the material used for studying the nonlinear phenomena. The growth of research in nonlinear optics is closely linked to the rapid technological advances that have occurred in related fields, such as ultra-fast phenomena and optical communications. Nonlinear-optics activities range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology. This book reviews the development of some nonlinear optics researches in China, not only the discovery of new principles, but also potential applications of nonlinear optics for various industries.

Thin Film Micro-Optics

Thin Film Micro-Optics PDF Author: Ruediger Grunwald
Publisher: Elsevier
ISBN: 0080471250
Category : Technology & Engineering
Languages : en
Pages : 307

Book Description
"Thin-film microoptics" stands for novel types of microoptical components and systems which combine the well-known features of miniaturized optical elements with the specific advantages of thin optical layers. This approach enables for innovative solutions in shaping light fields in spatial, temporal and spectral domain. Low-dispersion and small-angle systems for tailoring and diagnosing laser pulses under extreme conditions as well as VUV-capable microoptics can be realized. Continuous-relief microstructures of refractive, reflective and hybrid characteristics are obtained by vapor deposition technologies with shadow masks in rotating systems. The book gives a comprehensive overview on fundamental laws of microoptics, types of thin-film microoptical components, methods and constraints of their design, fabrication and characterization, structure transfer into substrates, optical functions and applications. Recent theoretical and experimental results of basic and applied research are addressed. Particular emphasis will be laid on the generation of localized, nondiffracting few-cycle wavepackets of extended depth of focus and high tolerance against distortions. It is shown that the spectral interference of ultrabroadband conical beams results in spatio-temporal structures of characteristic X-shape, so-called X-waves, which are interesting for robust optical communication. New prospects are opened by exploiting small conical angles from nanolayer microoptics and self-apodized truncation of Bessel beams leading to the formation of single-maximum nondiffracting beams or "needle beams". Thin-film microoptical beam shapers have an enormous potential for future applications like the two-dimensional ultrafast optical processing, multichannel laser-matter interaction, nonlinear spectroscopy or advanced measuring techniques. - Introduces a new and promising branch of microoptics - Gives a compact overview on the types, properties and applications of the most important microoptical components containing valuable data and facts- Helps to understand the basic optical laws - Reports on the historical development line of thin-film microoptics - Provides brand new results of research and development in the field of ultrashort-pulse laser beam shaping and diagnostics- Discusses the future trends and first approaches of next generation microoptics- Contains a carefully assorted glossary of the most important technical terms

Ultrafast Supercontinuum Generation in Transparent Solid-State Media

Ultrafast Supercontinuum Generation in Transparent Solid-State Media PDF Author: Audrius Dubietis
Publisher: Springer
ISBN: 3030149951
Category : Science
Languages : en
Pages : 125

Book Description
This book presents the underlying physical picture and an overview of the state of the art of femtosecond supercontinuum generation in various transparent solid-state media, ranging from wide-bandgap dielectrics to semiconductor materials, and across various parts of the optical spectrum, from the ultraviolet to the mid-infrared. A particular emphasis is placed on the most recent experimental developments: multioctave supercontinuum generation with pumping in the mid-infrared spectral range, spectral control, power and energy scaling of broadband radiation and the development of simple, flexible and robust pulse compression techniques, which deliver few optical cycle pulses and which could be readily implemented in a variety of modern ultrafast laser systems. The expected audience includes graduate students, professionals and scientists working in the field of laser-matter interactions and ultrafast nonlinear optics.