Ultra-wideband Synthetic Aperture Imaging : Data and Image Processing

Ultra-wideband Synthetic Aperture Imaging : Data and Image Processing PDF Author: Greg Barrie
Publisher: Defence R&D Canada - Ottawa
ISBN:
Category : Imaging systems
Languages : en
Pages : 40

Book Description


Ultra-wideband Synthetic Aperture Radar Imaging

Ultra-wideband Synthetic Aperture Radar Imaging PDF Author: Daniel Oloumi
Publisher:
ISBN:
Category : Imaging systems
Languages : en
Pages : 179

Book Description
Ultra wideband (UWB)- synthetic aperture radars are emerging devices that are ideal for sensing and imaging applications in many special conditions such as monitoring subsurfaces, through-wall imaging, non-destructive characterization of materials, oil reservoir monitoring, weather forecasting, geo mapping, microwave holography for tissue imaging, and breast tomography to identify tumors. The exceptional characteristics of UWB radars, including high spatial resolution, low probability of interfering with other radio frequency (RF) signals, low power spectral density and compact size make them suitable for numerous applications. Moreover, their low power consumption allows them to operate on batteries, lending them to portable applications. Oil reservoir monitoring using UWB radar is a new trend in the oil and gas industry for reservoir management and improving production. Monitoring perforations'conditions in metal or concrete-cased oil wells can provide valuable information for oil well maintenance and process optimization. Moreover, observing steam chamber growth in a heavy oil reservoir using radar technology will provide feedback to control steam flow to enhance oil extraction in the steam assisted gravity drainage (SAGD) process. Radar imaging is a developing imaging modality for biomedical applications to study functional and pathological conditions of soft tissue. Radar imaging offers a safe, portable, cost-effective and near real-time imaging supplement for the non-invasive assessment of acute and chronic soft tissue conditions. Microwave imaging may turn out to be a simple and efficient method to perform breast imaging capable of providing adequate image resolutions for diagnosis. This thesis focused on the applications of UWB-synthetic aperture radar (SAR) systems for oil reservoir monitoring and breast tumor imaging; both applications share a requirement for high image resolution. The theory part investigates the design procedure for UWBSAR systems with specific range and cross-range resolutions. The effect of the pulse shape, bandwidth, integration angle, and signal-to-noise ratio (SNR) of the received pulse on the image resolution is comprehensively studied. To enhance the image resolution, pre-processing of the received pulses with envelope detection is proposed. Superluminal phenomenon and UWB pulse propagation in the near-field of an antenna is studied. The apparent superluminal pulse velocity is due to the pulse reshaping of the radiated pulse in the near-field of the antenna. The effect of pulse velocity on the quality of reconstructed images is demonstrated. The application part looks at the suitability of UWB-SAR for oil reservoir monitoring, such as perforation imaging in concrete- and metal-cased oil wells and steam chamber monitoring in heavy oil reservoir. High-quality images are reconstructed using a combination of UWB radar and SAR processing along with the proposed algorithms to improve image quality. The investigation includes positive image generation to enhance image sharpness, and near-field imaging procedure. Practical considerations for SAGD process monitoring such as power budget and heterogeneity analysis of a heavy oil reservoir using UWB radar are studied. The application of UWB-circular synthetic aperture radar (CSAR) for breast tumor imaging is also demonstrated. Tomographic image reconstruction was carried out using a time domain global back projection technique adapted to circular trajectory data acquisition. The suitability of this technique for breast tumor detection and imaging is demonstrated through experiments on a 3D printed breast phantom, developed based on a human breast MRI, which emulates the breast in terms of structures and their electrical properties. The measurement results demonstrated the utility of UWB-CSAR for breast tumor imaging.

Algorithms for Synthetic Aperture Radar Imagery X

Algorithms for Synthetic Aperture Radar Imagery X PDF Author: Edmund G. Zelnio
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Computers
Languages : en
Pages : 422

Book Description


In-situ, High-resolution Radar Imaging of Dynamic Targets Using an Ultra-wideband Radar

In-situ, High-resolution Radar Imaging of Dynamic Targets Using an Ultra-wideband Radar PDF Author: Chenchen Jimmy Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 268

Book Description
This dissertation investigates in-situ, high-resolution radar imaging of dynamic targets using an ultra-wideband (UWB) radar. Three challenging classes of dynamic targets are investigated: wind turbines, vehicles, and small consumer drones. First, the measurement and processing methodologies are developed to capture the inverse synthetic aperture radar (ISAR) image of an operating horizontal-axis wind turbine. Measurement data of a small three-blade wind turbine are collected using a UWB radar, and the measured signatures are compared to simulation results based on physical optics. The backscattering phenomenology is examined in the sinogram, spectrogram, and ISAR image domains. The same methodologies are then applied to generate the in-situ ISAR imagery of an 18-blade windmill and a 1.7 MW utility-class wind turbine. Next, the radar signatures of a vertical-axis wind turbine are studied. Measurement and simulation are carried out for a 1.5 m tall Darrieus-type turbine model. Interpretation of the dominant backscattering mechanisms is carried out. Subsequently, the radar signatures of a 112 m tall turbine are examined using simulation. Second, wide-angle ISAR imaging of vehicles is investigated. Measurement data of moving vehicles are collected using a stationary roadside UWB radar. The generated baseline ISAR images show a clear distinction between different-sized vehicles. The images are further focused through motion compensation using a p-norm minimization. The resulting images are well focused and correspond closely to the physical dimensions of the vehicles. Third, the ISAR imaging of small consumer drones is considered. Laboratory measurement is conducted first, where the drones are rotated on a turntable and the backscatterered data are collected over a wide frequency band to form high-resolution images. The effects of frequency band, aspect, polarization, dynamic blade rotation, camera mount, and drone types are examined. Subsequently, ISAR imaging of in-flight drones, from data collected using a stationary UWB radar on the ground, is demonstrated. Finally, synthetic aperture radar (SAR) imaging using a small drone as the radar platform is explored. The entire system including a UWB radar, antennas, a camera, and a single-board computer fits on the small drone and is controlled through a Wi-Fi connection. Both the side-looking and downward-looking SAR scenarios are presented.

Radar and Sonar Imaging and Processing

Radar and Sonar Imaging and Processing PDF Author: Andrzej Stateczny
Publisher: MDPI
ISBN: 3039439715
Category : Science
Languages : en
Pages : 468

Book Description
The Special Issue “Radar and Sonar Imaging Processing” is a collection of 21 articles exploring many topics related to remote sensing with radar and sonar sensors. In this editorial, we present short introductions of the published articles. The series of articles in this SI deal with a broad profile of aspects of the use of radar and sonar images in line with the latest scientific trends while making use of the latest developments in science, including artificial intelligence. It can be said that both radar and sonar imaging and processing still remain a “hot topic” and much research in this area is being conducted worldwide. New techniques and methods for extracting information from radar and sonar sensors and data have been proposed and verified. Some of these will stimulate further research while others have reached maturity and can be considered for industrial implementation and development.

Ultra-wideband Radar Technology

Ultra-wideband Radar Technology PDF Author: James D. Taylor
Publisher: CRC Press
ISBN: 131766308X
Category : Technology & Engineering
Languages : en
Pages : 442

Book Description
In 1995, James D. Taylor's Introduction to Ultra-Wideband Radar Systems introduced engineers to the theory behind a promising new concept for remote sensing. Since then, the field has undergone enormous growth with new applications realized and more applications conceptualized at a remarkable pace. However, understanding ultra-wideband (UWB) radar requires a new philosophical approach. Concepts such as radar cross section will have new meanings as range resolution becomes smaller than the target. Ultra-Wideband Radar Technology is a guide to the future of radar by an international team of experts. They present the problems, solutions, and examples of UWB radar remote sensing. Chapters discuss the theory and ideas for future systems development, and show the potential capabilities. The writers present concepts such as the differences between UWB and conventional radars, improving over-resolved target detection, receivers and waveforms, micropower systems, high power switching, and bistatic radar polarimetry. Finding comparable information elsewhere might require consulting hundreds of other books, technical journals, and symposium proceedings. Ultra-Wideband Radar Technology offers a unique opportunity to explore the theory, applications, and technology of UWB radar within a single source.

Ultra-Wideband, Short-Pulse Electromagnetics 3

Ultra-Wideband, Short-Pulse Electromagnetics 3 PDF Author: Carl E. Baumann
Publisher: Springer Science & Business Media
ISBN: 1475768966
Category : Technology & Engineering
Languages : en
Pages : 510

Book Description
The first two international conferences on Ultra-Wideband (UWB), Short-Pulse (SP) Electromagnetics were held at Polytechnic University, Brooklyn, New York in 1992 and 1994. Their purpose was to focus on advanced technologies for generating, radiating, and detecting UWB,SP signals, on mathematical methods, their propagation and scattering, and on current as well as potential future applications. The success of these two conferences led to the desirability of scheduling a third conference. Impetus was provided by the electromagnetics community and discussions led by Carl Baum and Larry Carin resulted in the suggestion that the UWB conferences be moved around, say to government laboratories such as Phillips Laboratory. Consequently the decision was made by the Permanent HPEM Committee to expand AMEREM '96 to include the Third Ultra-Wide Band, Short-Pulse (UWB,SP 3) with the Third Unexploded Ordnance Detec tion and Range Remediation Conference (UXO) and the HPEMINEM Conference in Albuquerque, New Mexico during the period May 27-31, 1996. Planning is now underway for EUROEM '98 in June, 1998 in Tel Aviv, Israel. Joseph Shiloh is the conference chairman. A fourth UWB,SP meeting is planned as a part of this conference and Ehud Heyman will coordinate this part of the meeting. The papers which appear in this volume, the third in the UWB,SP series, update subject areas from the earlier UWB,SP conferences. These topics include pulse generation and detection, antennas, pulse propagation, scattering theory, signal processing, broadband electronic systems, and buried targets.

Introduction to Synthetic Aperture Radar Using Python and MATLAB®

Introduction to Synthetic Aperture Radar Using Python and MATLAB® PDF Author: Lee Andrew (Andy) Harrison
Publisher: Artech House
ISBN: 1630818658
Category : Technology & Engineering
Languages : en
Pages : 381

Book Description
This comprehensive introduction to synthetic aperture radar (SAR) is a practical guide to the analysis, simulation, and design of SAR systems. The video eBook uses constructive examples and real-world collected datasets to demonstrate image registration and autofocus methods. Both two- and three-dimensional image formation algorithms are presented. Hardware, software, and environmental parameters are used to estimate performance limits for SAR operation and utilization. A set of Python and MATLAB software tools is included and provides you with an effective mechanism to analyze and predict SAR performance for various imaging scenarios and applications. Examples which use the software tools are provided at the end of each chapter to reinforce critical SAR imaging topics such as clutter-to-noise ratio, mapping rate, spatial resolution, Doppler bandwidth, pulse repetition frequency, and coherency. This is an excellent resource for engineering professionals working in areas of radar signal processing and imaging as well as students interested in studying SAR.

Ultra-Wideband, Short-Pulse Electromagnetics 6

Ultra-Wideband, Short-Pulse Electromagnetics 6 PDF Author: Eric L. Mokole
Publisher: Springer Science & Business Media
ISBN: 9780306474811
Category : Science
Languages : en
Pages : 616

Book Description
Ultra-Wideband Short-Pulse Electromagnetics 6 was held at theAmerican Electromagnetics 2002 conference June 3-7, 2002 at the U.S.Naval Academy in Annapolis, Maryland. Topics include: UWB RadarSystems; UWB Antennas; Scattering; Pulsed Power; Short-PulseMeasurement Techniques; Time-Domain Computation Techniques; Time-Domain Signal Processing; UWB Polarimetry; UWB Sensing ofTerrain; Wavelets & Multi-Resolution Algorithms; Target Detection &Discrimination; Propagation; Underground & Subsurface Propagation; Electromagnetic Theory; New Canonical Problems, Benchmark Solutions; Signal Processing.

Ultrawideband Radar

Ultrawideband Radar PDF Author: James D. Taylor
Publisher: CRC Press
ISBN: 1351834436
Category : Technology & Engineering
Languages : en
Pages : 539

Book Description
Providing a practical review of the latest technology in the field, Ultrawideband Radar Applications and Design presents cutting-edge advances in theory, design, and practical applications of ultrawideband (UWB) radar. This book features contributions from an international team of experts to help readers learn about a wide range of UWB topics, including: History of the technology American and European governmental regulations and key definitions Nonsinusoidal wave propagation theory Random signal radar Object detection by ground permittivity measurements Large-target backscattering effects Medical applications Large current radiator antenna design Materials-penetrating theory Radar signal processing Weak-signal detection methods Holographic and real time radar imaging This book’s contributors use practical information to illustrate the latest theoretical developments and demonstrate UWB radar principles through case studies. Radar system engineers will find ideas for precision electronic sensing systems for use in medical, security, industrial, construction, and geophysical applications, as well as those used in archeological, forensic and transportation operations.