Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques PDF full book. Access full book title Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques by Dongjoo Lee. Download full books in PDF and EPUB format.

Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques

Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques PDF Author: Dongjoo Lee
Publisher:
ISBN:
Category : Laser pulses, Ultrashort
Languages : en
Pages :

Book Description
In the past several decades the technology for the creation and use of ultrashort pulses has progressed tremendously. Now, it is possible to generate laser pulses as short as a few femtoseconds in duration, and such pulses have been used for a wide range of applications. In addition, the means of measuring these pulses has progressed so rapidly. However, despite recent great advances in ultrashort-pulse measurement techniques, much remains to be done. In particular, pulse-measurement devices have relatively small wavelength-tuning ranges, and the phase-match is problematic for the pulses with a wide bandwidth such as supercontinuum. In this thesis, I will demonstrate a new pulse measurement technique which can phase-match ultra-broad bandwidth of super-continuum using transient grating frequency-resolved-optical-gating (TG FROG). Also, I will demonstrate a simplified device which can measure the UV ultra-short pulse using transient grating process, one of the third-order nonlinearity and can cover from UV to IR with the same arrangement.

Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques

Ultra-broadband Phase-matching Ultrashort-laser-pulse Measurement Techniques PDF Author: Dongjoo Lee
Publisher:
ISBN:
Category : Laser pulses, Ultrashort
Languages : en
Pages :

Book Description
In the past several decades the technology for the creation and use of ultrashort pulses has progressed tremendously. Now, it is possible to generate laser pulses as short as a few femtoseconds in duration, and such pulses have been used for a wide range of applications. In addition, the means of measuring these pulses has progressed so rapidly. However, despite recent great advances in ultrashort-pulse measurement techniques, much remains to be done. In particular, pulse-measurement devices have relatively small wavelength-tuning ranges, and the phase-match is problematic for the pulses with a wide bandwidth such as supercontinuum. In this thesis, I will demonstrate a new pulse measurement technique which can phase-match ultra-broad bandwidth of super-continuum using transient grating frequency-resolved-optical-gating (TG FROG). Also, I will demonstrate a simplified device which can measure the UV ultra-short pulse using transient grating process, one of the third-order nonlinearity and can cover from UV to IR with the same arrangement.

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses PDF Author: Rick Trebino
Publisher: Springer Science & Business Media
ISBN: 146151181X
Category : Science
Languages : en
Pages : 428

Book Description
The Frequency-Resolved Optical-Gating (FROG) technique has revolutionized our ability to measure and understand ultrashort laser pulses. This book contains everything you need to know to measure even the shortest, weakest, or most complex ultrashort laser pulses. Whether you're an undergrad or an advanced researcher, you'll find easy-to-understand descriptions of all the key ideas behind all the FROG techniques, all the practical details of pulse measurement, and many new directions of research. This book is not like any other scientific book. It is a lively discussion of the basic concepts. It is an advanced treatment of research-level issues.

Ultrashort Pulse Lasers and Ultrafast Phenomena

Ultrashort Pulse Lasers and Ultrafast Phenomena PDF Author: Takayoshi Kobayashi
Publisher: CRC Press
ISBN: 0429589786
Category : Medical
Languages : en
Pages : 1255

Book Description
This book describes the basic physical principles of techniques to generate and ultrashort pulse lasers and applications to ultrafast spectroscopy of various materials covering chemical molecular compounds, solid-state materials, exotic novel materials including topological materials, biological molecules and bio- and synthetic polymers. It introduces non-linear optics which provides the basics of generation and measurement of pulses and application examples of ultrafast spectroscopy to solid state physics. Also it provide not only material properties but also material processing procedures. The book describes also details of the world shortest visible laser and DUV lasers developed by the author’s group. It is composed of the following 12 Sections: The special features of this book is that it is written by a single author with a few collaborators in a systematic way. Hence it provides a comprehensive and systematic description of the research field of ultrashort pulse lasers and ultrafast spectroscopy. Generation of ultrashort pulses in deep ultraviolet to near infrared Generation of ultrashort pulses in terahertz Carrier envelope phase (CEP) Simple NLO processes with a few colors Multi-color involved NLO processes Multi-color ultrashort pulse generation NLO materials NLO processes in time-resolved spectroscopy Low dimension materials Conductors and superconductors Chemical reactions and material processing Photobiological reactions

Phase-stabilized Ultrashort Laser Systems for Spectroscopy

Phase-stabilized Ultrashort Laser Systems for Spectroscopy PDF Author: Jens Rauschenberger
Publisher: GRIN Verlag
ISBN: 3640096983
Category : Science
Languages : en
Pages : 146

Book Description
Doctoral Thesis / Dissertation from the year 2007 in the subject Physics - Theoretical Physics, grade: 1,0, LMU Munich (Max-Planck-Institut für Quantenoptik), language: English, abstract: The investigation of laser-matter interactions calls for ever shorter pulses as new effects can thus be explored. With laser pulses consisting of only a few cycles of the electric field, the phase of these electric field oscillations becomes important for many applications. In this thesis ultrafast laser sources are presented that provide few-cycle laser pulses with controlled evolution of the electric field waveform. Firstly, a technique for phasestabilizing ultra-broadband oscillators is discussed. With a simple setup it improves the reproducibility of the phase by an order of magnitude compared to previously existing methods. In a further step, such a phase-stabilized oscillator was integrated into a chirped-pulse amplifier. The preservation of phase-stability during amplification is ensured by secondary phase detection. The phase-stabilized intense laser pulses from this system were employed in a series of experiments that studied strong-field phenomena in a time-resolved manner. For instance, the laser-induced tunneling of electrons from atoms was studied on a sub-femtosecond timescale. Additional evidence for the reproducibility of the electric field waveform of the laser pulses is presented here: individual signatures of the electric field half-cycles were found in photoelectron spectra from above-threshold ionization. Frequency conversion of intense laser pulses by high-order harmonic generation is a common way of producing coherent light in the extreme ultraviolet (XUV) spectral region. Many attempts have been made to increase the low efficiency of this nonlinear process, e.g. by quasi phase-matching. Here, high-harmonic generation from solid surfaces under grazing incidence instead from a gas target is studied as higher efficiencies are expected in this configuration. Another approach to increasing the efficiency of high-harmonic generation is the placing of the gas target in an enhancement resonator. Additionally, the production of XUV photons happens at the full repetition rate of the seeding laser, i.e. in the region of several tens to hundreds of megahertz. This high repetition rate enables the use of the XUV light for high-precision optical frequency metrology with the frequency comb technique. With such an arrangement, harmonics up to 15th order were produced. A build-up cavity that stacks femtosecond laser pulses in a coherent manner to produce intra-cavity pulse energies of more than ten microjoules at a repetition rate of ten megahertz is presented here...

Comparing Ultrashort Laser Pulse Measurement Techniques for Highly Chirped Broadband Pulses

Comparing Ultrashort Laser Pulse Measurement Techniques for Highly Chirped Broadband Pulses PDF Author: Max Kelm
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Ultrashort Laser Pulse Phenomena

Ultrashort Laser Pulse Phenomena PDF Author: Jean-Claude Diels
Publisher: Elsevier
ISBN: 0080466400
Category : Science
Languages : en
Pages : 675

Book Description
Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). Provides an easy to follow guide through "faster than electronics" probing and detection methods THE manual on designing and constructing femtosecond systems and experiments Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging

Ultrashort Light Pulses

Ultrashort Light Pulses PDF Author: S.L. Shapiro
Publisher: Springer Science & Business Media
ISBN: 3662225743
Category : Science
Languages : en
Pages : 397

Book Description
Soon after the invention of the laser, a brand-new area of endeavour emerged after the discovery that powerful ultrashort (picosecond) light pulses could be extracted from some lasers. Chemists, physicists, and engineers quickly recognized that such pulses would allow direct temporal studies of extremely rapid phenomena requiring, however, development of revolutionary ultrafast optical and electronic devices. For basic research the development of picosecond pulses was highly important because experimentalists were now able to measure directly the motions of atoms and molecules in liquids and solids: by disrupting a material from equilibrium with an intense picosecond pulse and then recording the time of return to the equilibrium state by picosecond techniques. Studies of picosecond laser pulses-their generation and diagnostic tech niques-are still undergoing a fairly rapid expansion, but a critical review of the state of the art by experienced workers in the field may be a timely help to new experimentalists. We shall review the sophisticated tools developed in the last ten years, including the modelocked picosecond-pulse-emitting lasers, the picosecond detection techniques, and picosecond devices. Moreover, we shall outline the basic foundations for the study of rapid events in chemistry and physics, which have emerged after many interesting experiments and which are now being applied in biology. An in-depth coverage of various aspects of the picosecond field should be helpful to scientists and engineers alike.

Phase Retrieval and Time-frequency Methods in the Measurement of Ultrashort Laser Pulses

Phase Retrieval and Time-frequency Methods in the Measurement of Ultrashort Laser Pulses PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
Recently several techniques have become available to measure the time- (or frequency- ) dependent intensity and phase of ultrashort laser pulses. One of these, Frequency-Resolved Optical Gating (FROG), is rigorous and has achieved single-laser-shot operation. FROG combines the concepts of time-frequency analysis in the form of spectrogram generation (in order to create a two-dimensional problem), and uses a phase-retrieval-based algorithm to invert the experimental data to yield the intensity and phase of the laboratory laser pulse. In FROG it is easy to generate a spectrogram of the unknown signal, and inversion of the spectrogram to recover the signal is the main goal. Because the temporal width of a femtosecond laser pulse is much shorter than anything achievable by electronics, FROG uses the pulse to measure itself. In FROG, the laser pulse is split into two replicas of itself by a partially reflecting beamsplitter, and the two replicas interact with each other in a medium with an instantaneous nonlinear-optical response. This interaction generates a signal field that is then frequency-resolved using a spectrometer. The spectrum of the signal field is measured for all relevant values of the temporal delay between the two pulses. Here, the authors employ FROG and FROG related techniques to measure the time-dependent intensity and phase of an ultrashort laser pulse.

Ultrafast Optics

Ultrafast Optics PDF Author: Andrew M. Weiner
Publisher: John Wiley & Sons
ISBN: 1118211472
Category : Science
Languages : en
Pages : 529

Book Description
A comprehensive treatment of ultrafast optics This book fills the need for a thorough and detailed account of ultrafast optics. Written by one of the most preeminent researchers in the field, it sheds new light on technology that has already had a revolutionary impact on precision frequency metrology, high-speed electrical testing, biomedical imaging, and in revealing the initial steps in chemical reactions. Ultrafast Optics begins with a summary of ultrashort laser pulses and their practical applications in a range of real-world settings. Next, it reviews important background material, including an introduction to Fourier series and Fourier transforms, and goes on to cover: Principles of mode-locking Ultrafast pulse measurement methods Dispersion and dispersion compensation Ultrafast nonlinear optics: second order Ultrafast nonlinear optics: third order Mode-locking: selected advanced topics Manipulation of ultrashort pulses Ultrafast time-resolved spectroscopy Terahertz time-domain electromagnetics Professor Weiner's expertise and cutting-edge research result in a book that is destined to become a seminal text for engineers, researchers, and graduate students alike.

 PDF Author:
Publisher:
ISBN: 1446650715
Category :
Languages : en
Pages : 182

Book Description