Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry PDF full book. Access full book title Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry by . Download full books in PDF and EPUB format.

Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry

Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry

Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

Boundary Plasma Turbulence Simulations for Tokamaks

Boundary Plasma Turbulence Simulations for Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 41

Book Description
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

Workshop "Langzeitverfügbarkeit digitaler Dokumente - Erarbeitung eines ersten kooperativen Konzepts für Deutschland" mit Unterstützung des Bundesministeriums für Bildung und Forschung

Workshop Author: Deutsche Bibliothek
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Book Description


On the Edge of Magnetic Fusion Devices

On the Edge of Magnetic Fusion Devices PDF Author: Sergei Krasheninnikov
Publisher: Springer Nature
ISBN: 3030495949
Category : Science
Languages : en
Pages : 269

Book Description
This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.

Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points

Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points PDF Author: D. A. Russell
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) formation of a density pedestal due to neutral fueling; (4)identification of convective transport by localized plasma 'blobs' in the SOL at high density and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (5) a new divertor-leg instability driven by a radial tilt of the divertor plate.

Nuclear Fusion

Nuclear Fusion PDF Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 948

Book Description


Turbulence in the Divertor Region of Tokamak Edge Plasma

Turbulence in the Divertor Region of Tokamak Edge Plasma PDF Author: R. H. Cohen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Results of recent modeling of tokamak edge plasma with the turbulence code BOUT are presented. In previous studies with BOUT the background profiles of plasma density and temperature were set as flux surface functions. However in the divertor region of a tokamak the temperature is typically lower and density is higher than those at the mid-plane. To account for this in the present study a poloidal variation of background plasma density and temperature is included to provide a more realistic model. For poloidally uniform profiles of the background plasma the calculated turbulence amplitude peaks near outer mid-plane, while in the divertor region the amplitude is small. However, present simulations show that as the background plasma profiles become more poloidally non-uniform the amplitude of density fluctuations, {tilde n}{sub i}, starts peaking in the divertor. It is found that in the divertor region the amplitude of n{sub i} fluctuations grows approximately linearly with the local density of the background plasma, n{sub i0}, while the amplitude of T{sub e} and {phi} fluctuations is positively correlated with the local electron temperature, T{sub e0}. Correlation analysis shows that plasma turbulence is isolated by the x-points.

Status and Verification of Edge Plasma Turbulence Code BOUT.

Status and Verification of Edge Plasma Turbulence Code BOUT. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Book Description
The BOUT code is a detailed numerical model of tokamak edge turbulence based on collisional plasma uid equations. BOUT solves for time evolution of plasma uid variables: plasma density N{sub i}, parallel ion velocity V{sub {parallel}i}, electron temperature T{sub e}, ion temperature T{sub i}, electric potential [phi], parallel current j{sub {parallel}}, and parallel vector potential A{sub {parallel}}, in realistic 3D divertor tokamak geometry. The current status of the code, physics model, algorithms, and implementation is described. Results of verification testing are presented along with illustrative applications to tokamak edge turbulence.

Gyrokinetic simulation of tokamak turbulence and transport in realistic geometry

Gyrokinetic simulation of tokamak turbulence and transport in realistic geometry PDF Author: Geoffrey Mark Furnish
Publisher:
ISBN:
Category : Tokamaks
Languages : en
Pages : 402

Book Description


Theory of Fusion Plasmas

Theory of Fusion Plasmas PDF Author: Olivier Sauter
Publisher: American Institute of Physics
ISBN: 9780735406001
Category : Science
Languages : en
Pages : 400

Book Description
The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.