The Transport Journal

The Transport Journal PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 258

Book Description


Microstructure and Yield Strength Effects on Hydrogen-and-tritium-induced Cracking in 21-6-9 Stainless Steel

Microstructure and Yield Strength Effects on Hydrogen-and-tritium-induced Cracking in 21-6-9 Stainless Steel PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Book Description
High-energy-rate-forged (HERF) austenitic stainless steels are used for the containment of hydrogen and its isotopes. Embrittlement of these materials by hydrogen has been a source of concern for some time. The nature and the degree of embrittlement by hydrogen varies considerably and, among other factors, is a complicated function of material composition and processing variations. Helium, the radioactive decay product of tritium, will also embrittle stainless steels. Precipitation of microscopic helium bubbles tends to increase the material's flow stress, through dislocation pinning, as well as weaken interfaces like grain and twin boundaries. Since fracture toughness tends to decrease with increasing yield strength, at least part of the helium-embrittlement problem may be due to strength effects. The relationship between a material's yield strength and toughness and, the incremental strength increase and corresponding toughness decrease imparted by helium is not known. The purpose of this study was to measure the combined effects of strength, hydrogen isotopes, and helium on the room temperature mechanical and fracture toughness properties of HERF 21-6-9 stainless steel.

Proceedings of the Fourteenth Topical Meeting on the Technology of Fusion Energy, October 15-19, 2000, Park City, Utah

Proceedings of the Fourteenth Topical Meeting on the Technology of Fusion Energy, October 15-19, 2000, Park City, Utah PDF Author:
Publisher:
ISBN:
Category : Controlled fusion
Languages : en
Pages : 906

Book Description


Tritium-helium Effects in Metals

Tritium-helium Effects in Metals PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Investigations of helium effects in metals at the Savannah River Laboratory have been carried out by introducing helium by radioactive decay of tritium. This process does not create concurrent radiation damage, such as accompanies ion implantation and (n, .cap alpha.) reactions. The process has its own peculiarities, however, which partially mask and interact with the helium effect of interest. The distribution and local concentration of helium and tritium, which are responsible for changes in mechanical properties and fracture mode, are controlled by the large difference in solubility and diffusivity between the two atoms and by their differing interaction energies with lattice defects, impurities, and internal boundaries. Furthermore, in all investigations with helium generated from tritium decay, some tritium and deuterium are always present. Consequently, property changes include tritium-helium interaction effects to some extent. Results of investigations with several austenitic stainless steels, Armco iron, and niobium single crystals illustrate the variety of phenomena and some of the complex interactions that can be encountered.

Fusion Technology

Fusion Technology PDF Author:
Publisher:
ISBN:
Category : Fusion reactors
Languages : en
Pages : 118

Book Description


Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2566

Book Description


EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS.

EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS. PDF Author: M. Morgan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldments was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.

2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS.

2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R & D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on "Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels"; and, (5) Published report on "The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels". These accomplishments are highlighted here and references given to additional reports for more detailed information.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Book Description


TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS.

TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Tritium reservoirs are constructed from welded stainless steel forgings. While these steels are highly resistant to the embrittling effects of hydrogen isotopes and helium from tritium decay; they are not immune. Tritium embrittlement is an enhanced form of hydrogen embrittlement because of the presence of helium-3 from tritium decay which nucleates as nanometer-sized bubbles on dislocations, grain boundaries, and other microstructural defects. Steels with decay helium bubble microstructures are hardened and less able to deform plastically and become more susceptible to embrittlement by hydrogen and its isotopes. Ductility, elongation-to-failure, and fracture toughness are reduced by exposures to tritium and the reductions increase with time as helium-3 builds into the material from tritium permeation and radioactive decay. Material and forging specifications have been developed for optimal material compatibility with tritium. These specifications cover composition, mechanical properties, and select microstructural characteristics like grain size, flow-line orientation, inclusion content, and ferrite distribution. For many years, the forming process of choice for reservoir manufacturing was high-energy-rate forging (HERF), principally because the DOE forging facility owned only HERF hammers. Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF). One of the chief differences between the two forging processes is strain rate: Conventional hydraulic or mechanical forging presses deform the metal at 4-8 ft/s, about ten-fold slower than the HERF process. The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures. While long-term life storage tests have demonstrated the general tritium compatibility of tritium reservoirs, fracture-toughness properties of both conventionally forged and high-energy-rate forged are needed for designing and establishing longer tritium-reservoir lifetimes, ranking materials, and, potentially, for qualifying new forging vendors or processes. Measurements on the effects of tritium and decay helium on the fracture toughness properties of CF stainless steels having similar composition, grain size, and mechanical properties to previously studied HERF steels are needed and have not been conducted until now. The compatibility of stainless steel welds with tritium represents another concern for long-term reservoir performance. Weldments have not been well-characterized with respect to tritium embrittlement, although a recent study was completed on the effect of tritium and decay helium on the fracture toughness properties of Type 304L weldments. This study expands the characterization of weldments through measurements of tritium and decay helium effects on the fracture toughness properties of Type 21-6-9 stainless steel. The purpose of this study was to measure and compare the fracture toughness properties of Type 21-6-9 stainless steel for conventional forgings and weldments in the non-charged, hydrogen-charged and tritium-charged-and-aged conditions.