Author: José F. Rodrigues
Publisher: Springer Science & Business Media
ISBN: 3764373172
Category : Mathematics
Languages : en
Pages : 290
Book Description
This book consists of contributions originating from a conference in Obedo, Portugal, which honoured the 70th birthday of V.A. Solonnikov. A broad variety of topics centering on nonlinear problems is presented, particularly Navier-Stokes equations, viscosity problems, diffusion-absorption equations, free boundaries, and Euler equations.
Trends in Partial Differential Equations of Mathematical Physics
Author: José F. Rodrigues
Publisher: Springer Science & Business Media
ISBN: 3764373172
Category : Mathematics
Languages : en
Pages : 290
Book Description
This book consists of contributions originating from a conference in Obedo, Portugal, which honoured the 70th birthday of V.A. Solonnikov. A broad variety of topics centering on nonlinear problems is presented, particularly Navier-Stokes equations, viscosity problems, diffusion-absorption equations, free boundaries, and Euler equations.
Publisher: Springer Science & Business Media
ISBN: 3764373172
Category : Mathematics
Languages : en
Pages : 290
Book Description
This book consists of contributions originating from a conference in Obedo, Portugal, which honoured the 70th birthday of V.A. Solonnikov. A broad variety of topics centering on nonlinear problems is presented, particularly Navier-Stokes equations, viscosity problems, diffusion-absorption equations, free boundaries, and Euler equations.
New Trends in Mathematical Physics
Author: Vladas Sidoravicius
Publisher: Springer Science & Business Media
ISBN: 9048128102
Category : Science
Languages : en
Pages : 886
Book Description
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
Publisher: Springer Science & Business Media
ISBN: 9048128102
Category : Science
Languages : en
Pages : 886
Book Description
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
Differential Equations on Manifolds and Mathematical Physics
Author: Vladimir M. Manuilov
Publisher: Birkhäuser
ISBN: 9783030373252
Category : Mathematics
Languages : en
Pages : 338
Book Description
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
Publisher: Birkhäuser
ISBN: 9783030373252
Category : Mathematics
Languages : en
Pages : 338
Book Description
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
New Trends in Stochastic Analysis and Related Topics
Author: Huaizhong Zhao
Publisher: World Scientific
ISBN: 9814360910
Category : Mathematics
Languages : en
Pages : 458
Book Description
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Publisher: World Scientific
ISBN: 9814360910
Category : Mathematics
Languages : en
Pages : 458
Book Description
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Developments in Partial Differential Equations and Applications to Mathematical Physics
Author: G. Buttazzo
Publisher: Springer Science & Business Media
ISBN: 1461530326
Category : Technology & Engineering
Languages : en
Pages : 245
Book Description
During the days 14-18 of October 1991, we had the pleasure of attending a most interesting Conference on New Developments in Partial Differential Equations and Applications to Mathematical Physics in Ferrarra. The Conference was organized within the Scientific Program celebrating the six hundredth birthday of the University of Ferrarra and, after the many stimulating lectures and fruitful discussions, we may certainly conclude, together with the numerous participants, that it has represented a big success. The Conference would not have been possible without the financial support of several sources. In this respect, we are particularly grateful to the Comitato Organizzatore del VI Centenario, the University of Ferrarra in the Office of the Rector, Professor Antonio Rossi, the Consiglio Nationale delle Ricerche, and the Department of Mathematics of the University of Ferrarra. We should like to thank all of the partlClpants and the speakers, and we are especially grateful to those who have contributed to the present volume. G. Buttazzo, University of Pisa G.P. Galdi, University of Ferrarra L. Zanghirati, University of Ferrarra Ferrarra, May 11 th, 1992 v CONTENTS INVITED LECTURES Liapunov Functionals and Qualitative Behaviour of the Solution to the Nonlinear Enskog Equation ...
Publisher: Springer Science & Business Media
ISBN: 1461530326
Category : Technology & Engineering
Languages : en
Pages : 245
Book Description
During the days 14-18 of October 1991, we had the pleasure of attending a most interesting Conference on New Developments in Partial Differential Equations and Applications to Mathematical Physics in Ferrarra. The Conference was organized within the Scientific Program celebrating the six hundredth birthday of the University of Ferrarra and, after the many stimulating lectures and fruitful discussions, we may certainly conclude, together with the numerous participants, that it has represented a big success. The Conference would not have been possible without the financial support of several sources. In this respect, we are particularly grateful to the Comitato Organizzatore del VI Centenario, the University of Ferrarra in the Office of the Rector, Professor Antonio Rossi, the Consiglio Nationale delle Ricerche, and the Department of Mathematics of the University of Ferrarra. We should like to thank all of the partlClpants and the speakers, and we are especially grateful to those who have contributed to the present volume. G. Buttazzo, University of Pisa G.P. Galdi, University of Ferrarra L. Zanghirati, University of Ferrarra Ferrarra, May 11 th, 1992 v CONTENTS INVITED LECTURES Liapunov Functionals and Qualitative Behaviour of the Solution to the Nonlinear Enskog Equation ...
New Trends in Fractional Differential Equations with Real-World Applications in Physics
Author: Jagdev Singh
Publisher: Frontiers Media SA
ISBN: 2889663043
Category : Science
Languages : en
Pages : 172
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Publisher: Frontiers Media SA
ISBN: 2889663043
Category : Science
Languages : en
Pages : 172
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Recent Trends in Partial Differential Equations
Author: Juan Luis Vazquez
Publisher: American Mathematical Soc.
ISBN: 0821838911
Category : Mathematics
Languages : en
Pages : 136
Book Description
This volume contains the research and expository articles for the courses and talks given at the UIMP-RSME Lluis A. Santalo Summer School, Recent Trends in Partial Differential Equations. The goal of the Summer School was to present some of the many advances that are currently taking place in the interaction between nonlinear partial differential equations and their applications to other scientific disciplines. Oriented to young post-docs and advanced doctoral students, the courses dealt with topics of current interest. Some of the tools presented are quite powerful and sophisticated. These new methods are presented in an expository manner or applied to a particular example to demonstrate the main ideas of the method and to serve as a handy introduction to further study. Young researchers in partial differential equations and colleagues from neighboring fields will find these notes a good addition to their libraries. This is a joint publication of the Real Sociedad Matematica Espanola and the American Mathematical Society.
Publisher: American Mathematical Soc.
ISBN: 0821838911
Category : Mathematics
Languages : en
Pages : 136
Book Description
This volume contains the research and expository articles for the courses and talks given at the UIMP-RSME Lluis A. Santalo Summer School, Recent Trends in Partial Differential Equations. The goal of the Summer School was to present some of the many advances that are currently taking place in the interaction between nonlinear partial differential equations and their applications to other scientific disciplines. Oriented to young post-docs and advanced doctoral students, the courses dealt with topics of current interest. Some of the tools presented are quite powerful and sophisticated. These new methods are presented in an expository manner or applied to a particular example to demonstrate the main ideas of the method and to serve as a handy introduction to further study. Young researchers in partial differential equations and colleagues from neighboring fields will find these notes a good addition to their libraries. This is a joint publication of the Real Sociedad Matematica Espanola and the American Mathematical Society.
Mathematics of Wave Phenomena
Author: Willy Dörfler
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330
Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330
Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
Elliptic Partial Differential Equations
Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821853139
Category : Mathematics
Languages : en
Pages : 161
Book Description
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.
Publisher: American Mathematical Soc.
ISBN: 0821853139
Category : Mathematics
Languages : en
Pages : 161
Book Description
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.
Attractors for Equations of Mathematical Physics
Author: Vladimir V. Chepyzhov
Publisher: American Mathematical Soc.
ISBN: 0821829505
Category : Mathematics
Languages : en
Pages : 377
Book Description
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821829505
Category : Mathematics
Languages : en
Pages : 377
Book Description
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.