Author: P.G. Ciarlet
Publisher: Springer
ISBN: 3540388001
Category : Science
Languages : en
Pages : 428
Book Description
Trends and Applications of Pure Mathematics to Mechanics
Author: P.G. Ciarlet
Publisher: Springer
ISBN: 3540388001
Category : Science
Languages : en
Pages : 428
Book Description
Publisher: Springer
ISBN: 3540388001
Category : Science
Languages : en
Pages : 428
Book Description
Trends in Applications of Mathematics to Mechanics
Author: Jose Francisco Rodrigues
Publisher: CRC Press
ISBN: 9780582248748
Category : Mathematics
Languages : en
Pages : 384
Book Description
With the purpose of promoting cooperative research involving the fields of mechanics and pure mathematics, the International Society for the Interaction of Mechanics and Mathematics (ISIMM) sponsors a series of Symposia. The ninth in this series (STAMM 94) took place in July 1994 at the University of Lisbon and emphasized the current trends in nonlinear mechanics, phase change problems (in cooperation with the European Science Foundation Scientific Programme on Mathematical Treatment of Free Boundary Problems), non Newtonian fluids, optimization in solid mechanics and numerical methods in continuum mechanics. This book collects a refereed selection of original contributions presented at STAMM 94, covering a large spectrum of current research in the above topics, from nonlinear elasticity to nonlinear fluids, from phase transitions to diffusion phenomena, and from structural optimization and homogenization to numerical schemes.
Publisher: CRC Press
ISBN: 9780582248748
Category : Mathematics
Languages : en
Pages : 384
Book Description
With the purpose of promoting cooperative research involving the fields of mechanics and pure mathematics, the International Society for the Interaction of Mechanics and Mathematics (ISIMM) sponsors a series of Symposia. The ninth in this series (STAMM 94) took place in July 1994 at the University of Lisbon and emphasized the current trends in nonlinear mechanics, phase change problems (in cooperation with the European Science Foundation Scientific Programme on Mathematical Treatment of Free Boundary Problems), non Newtonian fluids, optimization in solid mechanics and numerical methods in continuum mechanics. This book collects a refereed selection of original contributions presented at STAMM 94, covering a large spectrum of current research in the above topics, from nonlinear elasticity to nonlinear fluids, from phase transitions to diffusion phenomena, and from structural optimization and homogenization to numerical schemes.
Mathematical Elasticity
Author: Philippe G. Ciarlet
Publisher: SIAM
ISBN: 1611976782
Category : Mathematics
Languages : en
Pages : 521
Book Description
The first book of a three-volume set, Three-Dimensional Elasticity covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. It includes the known existence theorems, either via the implicit function theorem or via the minimization of the energy (John Ball’s theory). An extended preface and extensive bibliography have been added to highlight the progress that has been made since the volume’s original publication. While each one of the three volumes is self-contained, together the Mathematical Elasticity set provides the only modern treatise on elasticity; introduces contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells; and contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
Publisher: SIAM
ISBN: 1611976782
Category : Mathematics
Languages : en
Pages : 521
Book Description
The first book of a three-volume set, Three-Dimensional Elasticity covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. It includes the known existence theorems, either via the implicit function theorem or via the minimization of the energy (John Ball’s theory). An extended preface and extensive bibliography have been added to highlight the progress that has been made since the volume’s original publication. While each one of the three volumes is self-contained, together the Mathematical Elasticity set provides the only modern treatise on elasticity; introduces contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells; and contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
Classical and Advanced Theories of Thin Structures
Author: Antonio Morassi
Publisher: Springer Science & Business Media
ISBN: 3211854304
Category : Science
Languages : en
Pages : 262
Book Description
The book presents an updated state-of-the-art overview of the general aspects and practical applications of the theories of thin structures, through the interaction of several topics, ranging from non-linear thin-films, shells, junctions, beams of different materials and in different contexts (elasticity, plasticity, etc.). Advanced problems like the optimal design and the modeling of thin films made of brittle or phase-transforming materials will be presented as well.
Publisher: Springer Science & Business Media
ISBN: 3211854304
Category : Science
Languages : en
Pages : 262
Book Description
The book presents an updated state-of-the-art overview of the general aspects and practical applications of the theories of thin structures, through the interaction of several topics, ranging from non-linear thin-films, shells, junctions, beams of different materials and in different contexts (elasticity, plasticity, etc.). Advanced problems like the optimal design and the modeling of thin films made of brittle or phase-transforming materials will be presented as well.
Boundary Value Problems of Finite Elasticity
Author: Tullio Valent
Publisher: Springer Science & Business Media
ISBN: 146123736X
Category : Science
Languages : en
Pages : 201
Book Description
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments.
Publisher: Springer Science & Business Media
ISBN: 146123736X
Category : Science
Languages : en
Pages : 201
Book Description
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments.
Analysis IV
Author: V.G. Maz'ya
Publisher: Springer Science & Business Media
ISBN: 3642581757
Category : Mathematics
Languages : en
Pages : 240
Book Description
A linear integral equation is an equation of the form XEX. (1) 2a(x)cp(x) - Ix k(x, y)cp(y)dv(y) = f(x), Here (X, v) is a measure space with a-finite measure v, 2 is a complex parameter, and a, k, f are given (complex-valued) functions, which are referred to as the coefficient, the kernel, and the free term (or the right-hand side) of equation (1), respectively. The problem consists in determining the parameter 2 and the unknown function cp such that equation (1) is satisfied for almost all x E X (or even for all x E X if, for instance, the integral is understood in the sense of Riemann). In the case f = 0, the equation (1) is called homogeneous, otherwise it is called inhomogeneous. If a and k are matrix functions and, accordingly, cp and f are vector-valued functions, then (1) is referred to as a system of integral equations. Integral equations of the form (1) arise in connection with many boundary value and eigenvalue problems of mathematical physics. Three types of linear integral equations are distinguished: If 2 = 0, then (1) is called an equation of the first kind; if 2a(x) i= 0 for all x E X, then (1) is termed an equation of the second kind; and finally, if a vanishes on some subset of X but 2 i= 0, then (1) is said to be of the third kind.
Publisher: Springer Science & Business Media
ISBN: 3642581757
Category : Mathematics
Languages : en
Pages : 240
Book Description
A linear integral equation is an equation of the form XEX. (1) 2a(x)cp(x) - Ix k(x, y)cp(y)dv(y) = f(x), Here (X, v) is a measure space with a-finite measure v, 2 is a complex parameter, and a, k, f are given (complex-valued) functions, which are referred to as the coefficient, the kernel, and the free term (or the right-hand side) of equation (1), respectively. The problem consists in determining the parameter 2 and the unknown function cp such that equation (1) is satisfied for almost all x E X (or even for all x E X if, for instance, the integral is understood in the sense of Riemann). In the case f = 0, the equation (1) is called homogeneous, otherwise it is called inhomogeneous. If a and k are matrix functions and, accordingly, cp and f are vector-valued functions, then (1) is referred to as a system of integral equations. Integral equations of the form (1) arise in connection with many boundary value and eigenvalue problems of mathematical physics. Three types of linear integral equations are distinguished: If 2 = 0, then (1) is called an equation of the first kind; if 2a(x) i= 0 for all x E X, then (1) is termed an equation of the second kind; and finally, if a vanishes on some subset of X but 2 i= 0, then (1) is said to be of the third kind.
Solitons
Author: Mohamed Atef Helal
Publisher: Springer Nature
ISBN: 1071624571
Category : Science
Languages : en
Pages : 483
Book Description
This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
Publisher: Springer Nature
ISBN: 1071624571
Category : Science
Languages : en
Pages : 483
Book Description
This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
Optimization And Anti-optimization Of Structures Under Uncertainty
Author: Isaac E Elishakoff
Publisher: World Scientific
ISBN: 190897818X
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering./a
Publisher: World Scientific
ISBN: 190897818X
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering./a
Thermodynamic Approaches in Engineering Systems
Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0128093390
Category : Technology & Engineering
Languages : en
Pages : 740
Book Description
Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research. - Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion - Written by a first-class expert in the field of advanced methods in thermodynamics - Provides a synthesis of recent thermodynamic developments in practical systems - Presents very elaborate literature discussions from the past fifty years
Publisher: Elsevier
ISBN: 0128093390
Category : Technology & Engineering
Languages : en
Pages : 740
Book Description
Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research. - Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion - Written by a first-class expert in the field of advanced methods in thermodynamics - Provides a synthesis of recent thermodynamic developments in practical systems - Presents very elaborate literature discussions from the past fifty years
Handbook of Differential Equations: Evolutionary Equations
Author: C.M. Dafermos
Publisher: Elsevier
ISBN: 0080932592
Category : Mathematics
Languages : en
Pages : 540
Book Description
Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: - A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications - • Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability - Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime • Geometric and diffractive optics, including wave interactions - Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity - Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable - Review of new results in the area - Continuation of previous volumes in the handbook series covering evolutionary PDEs - New content coverage of DE applications
Publisher: Elsevier
ISBN: 0080932592
Category : Mathematics
Languages : en
Pages : 540
Book Description
Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: - A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications - • Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability - Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime • Geometric and diffractive optics, including wave interactions - Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity - Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable - Review of new results in the area - Continuation of previous volumes in the handbook series covering evolutionary PDEs - New content coverage of DE applications