Author: Graham Griffiths
Publisher: Academic Press
ISBN: 0123846536
Category : Mathematics
Languages : en
Pages : 463
Book Description
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Traveling Wave Analysis of Partial Differential Equations
Author: Graham Griffiths
Publisher: Academic Press
ISBN: 0123846536
Category : Mathematics
Languages : en
Pages : 463
Book Description
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Publisher: Academic Press
ISBN: 0123846536
Category : Mathematics
Languages : en
Pages : 463
Book Description
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Solitons, Nonlinear Evolution Equations and Inverse Scattering
Author: Mark J. Ablowitz
Publisher: Cambridge University Press
ISBN: 0521387302
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.
Publisher: Cambridge University Press
ISBN: 0521387302
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.
A Modern Introduction to the Mathematical Theory of Water Waves
Author: Robin Stanley Johnson
Publisher: Cambridge University Press
ISBN: 9780521598323
Category : Mathematics
Languages : en
Pages : 468
Book Description
This text considers classical and modern problems in linear and non-linear water-wave theory.
Publisher: Cambridge University Press
ISBN: 9780521598323
Category : Mathematics
Languages : en
Pages : 468
Book Description
This text considers classical and modern problems in linear and non-linear water-wave theory.
Fractional Dynamics
Author: Carlo Cattani
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110472090
Category : Mathematics
Languages : en
Pages : 392
Book Description
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110472090
Category : Mathematics
Languages : en
Pages : 392
Book Description
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
Linear and Nonlinear Waves
Author: G. B. Whitham
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Partial Differential Equations and Solitary Waves Theory
Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
ISBN: 364200251X
Category : Mathematics
Languages : en
Pages : 746
Book Description
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.
Publisher: Springer Science & Business Media
ISBN: 364200251X
Category : Mathematics
Languages : en
Pages : 746
Book Description
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.
Travelling Waves in Nonlinear Diffusion-Convection Reaction
Author: Brian H. Gilding
Publisher: Springer Science & Business Media
ISBN: 9783764370718
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph has grown out of research we started in 1987, although the foun dations were laid in the 1970's when both of us were working on our doctoral theses, trying to generalize the now classic paper of Oleinik, Kalashnikov and Chzhou on nonlinear degenerate diffusion. Brian worked under the guidance of Bert Peletier at the University of Sussex in Brighton, England, and, later at Delft University of Technology in the Netherlands on extending the earlier mathematics to include nonlinear convection; while Robert worked at Lomonosov State Univer sity in Moscow under the supervision of Anatolii Kalashnikov on generalizing the earlier mathematics to include nonlinear absorption. We first met at a conference held in Rome in 1985. In 1987 we met again in Madrid at the invitation of Ildefonso Diaz, where we were both staying at 'La Residencia'. As providence would have it, the University 'Complutense' closed down during this visit in response to student demonstra tions, and, we were very much left to our own devices. It was natural that we should gravitate to a research topic of common interest. This turned out to be the characterization of the phenomenon of finite speed of propagation for nonlin ear reaction-convection-diffusion equations. Brian had just completed some work on this topic for nonlinear diffusion-convection, while Robert had earlier done the same for nonlinear diffusion-absorption. There was no question but that we bundle our efforts on the general situation.
Publisher: Springer Science & Business Media
ISBN: 9783764370718
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph has grown out of research we started in 1987, although the foun dations were laid in the 1970's when both of us were working on our doctoral theses, trying to generalize the now classic paper of Oleinik, Kalashnikov and Chzhou on nonlinear degenerate diffusion. Brian worked under the guidance of Bert Peletier at the University of Sussex in Brighton, England, and, later at Delft University of Technology in the Netherlands on extending the earlier mathematics to include nonlinear convection; while Robert worked at Lomonosov State Univer sity in Moscow under the supervision of Anatolii Kalashnikov on generalizing the earlier mathematics to include nonlinear absorption. We first met at a conference held in Rome in 1985. In 1987 we met again in Madrid at the invitation of Ildefonso Diaz, where we were both staying at 'La Residencia'. As providence would have it, the University 'Complutense' closed down during this visit in response to student demonstra tions, and, we were very much left to our own devices. It was natural that we should gravitate to a research topic of common interest. This turned out to be the characterization of the phenomenon of finite speed of propagation for nonlin ear reaction-convection-diffusion equations. Brian had just completed some work on this topic for nonlinear diffusion-convection, while Robert had earlier done the same for nonlinear diffusion-absorption. There was no question but that we bundle our efforts on the general situation.
Solving Frontier Problems of Physics: The Decomposition Method
Author: G. Adomian
Publisher: Springer Science & Business Media
ISBN: 9401582890
Category : Science
Languages : en
Pages : 367
Book Description
The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations.
Publisher: Springer Science & Business Media
ISBN: 9401582890
Category : Science
Languages : en
Pages : 367
Book Description
The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations.
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Nonlinear Systems Of Partial Differential Equations: Applications To Life And Physical Sciences
Author: Anthony W Leung
Publisher: World Scientific
ISBN: 9814467472
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.
Publisher: World Scientific
ISBN: 9814467472
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.