Transport Phenomena in Fuel Cells

Transport Phenomena in Fuel Cells PDF Author: Bengt Sundén
Publisher: WIT Press
ISBN: 1853128406
Category : Technology & Engineering
Languages : en
Pages : 385

Book Description
Fuel cells are expected to play a significant role in the next generation of energy systems and road vehicles for transportation. However, substantial progress is required in reducing manufacturing costs and improving performance. This book aims to contribute to the understanding of the transport processes in solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC), which are of current interest. A wide range of topics is covered, featuring contributions from prominent scientists and engineers in the field. A detailed summary of state-of-the-art knowledge and future needs, this text will be of value to graduate students and researchers working on the development of fuel cells within academia and industry.

The Role of Microstructure on Transport Phenomena in Fuel Cells

The Role of Microstructure on Transport Phenomena in Fuel Cells PDF Author: Kyle Nathan Grew
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Introduction to Transfer Phenomena in PEM Fuel Cells

Introduction to Transfer Phenomena in PEM Fuel Cells PDF Author: Bilal Abderezzak
Publisher: Elsevier
ISBN: 008102763X
Category : Technology & Engineering
Languages : en
Pages : 186

Book Description
Introduction to Transfer Phenomena in PEM Fuel Cells presents the fruit of several years of research in the area of fuel cells. The book illustrates the transfer phenomena occurring inside a single cell and describes the technology field of hydrogen, explicitly the production, storage and risk management of hydrogen as an energy carrier. Several applications of hydrogen are also cited, and special interest is dedicated to the PEM Fuel Cell. Mass, charge and heat transfer phenomena are also discussed in this great resource that includes explanations, illustrations and governing equations for each section. Illustrates transfer phenomena occurring within a single cell Describes the technological field of hydrogen (production, storage, and risk and management) Introduces the various applications of hydrogen Presents mass transfer, charge and heat phenomena

Hydrogen, Batteries and Fuel Cells

Hydrogen, Batteries and Fuel Cells PDF Author: Bengt Sundén
Publisher: Academic Press
ISBN: 0128169516
Category : Technology & Engineering
Languages : en
Pages : 254

Book Description
Hydrogen, Batteries and Fuel Cells provides the science necessary to understand these important areas, considering theory and practice, practical problem-solving, descriptions of bottlenecks, and future energy system applications. The title covers hydrogen as an energy carrier, including its production and storage; the application and analysis of electrochemical devices, such as batteries, fuel cells and electrolyzers; and the modeling and thermal management of momentum, heat, mass and charge transport phenomena. This book offers fundamental and integrated coverage on these topics that is critical to the development of future energy systems. Combines coverage of hydrogen, batteries and fuel cells in the context of future energy systems Provides the fundamental science needed to understand future energy systems in theory and practice Gives examples of problems and solutions in the use of hydrogen, batteries and fuel cells Considers basic issues in understanding hydrogen and electrochemical devices Describes methods for modeling and thermal management in future energy systems

Principles of Fuel Cells

Principles of Fuel Cells PDF Author: Xianguo Li
Publisher: CRC Press
ISBN: 113520179X
Category : Science
Languages : en
Pages : 339

Book Description
The book is engineering oriented and covers a large variety of topics ranging from fundamental principles to performance evaluation and applications. It is written systematically and completely on the subject with a summary of state-of-the-art fuel cell technology, filling the need for a timely resource. This is a unique book serving academic researchers, engineers, as well as people working in the fuel cell industry. It is also of substantial interest to students, engineers, and scientists in mechanical engineering, chemistry and chemical engineering, electrochemistry, materials science and engineering, power generation and propulsion systems, and automobile engineering.

Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell

Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell PDF Author: Torsten Beming
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fuel cells are electrochemical devices that rely on the transport of reactants (oxygen and hydrogen) and products (water and heat). These transport processes are coupled with electrochemistry and further complicated by phase change, porous media (gas diffusion electrodes) and a complex geometry. This thesis presents a three dimensional, non-isothermal computational model of a proton exchange membrane fuel cell (PEMFC). The model was developed to improve fundamental understanding of transport phenomena in PEMFCs and to investigate the impact of various operation parameters on performance. The model, which was implemented into a Computational Fluid Dynamics code, accounts for all major transport phenomena, including: water and proton transport through the membrane; electrochemical reaction; transport of electrons; transport and phase change of water in the gas diffusion electrodes; temperature variation; diffusion of multi-component gas mixtures in the electrodes; pressure gradients; multi-component convective heat and mass transport in the gas flow channels. Simulations employing the single-phase version of the model are performed for a straight channel section of a complete cell including the anode and cathode flow channels. Base case simulations are presented and analyzed with a focus on the physical insight, and fundamental understanding afforded by the availability of detailed distributions of reactant concentrations, current densities, temperature and water fluxes. The results are consistent with available experimental observations and show that significant temperature gradients exist within the cell, with temperature differences of several degrees Kelvin within the membrane-electrode-assembly. The three-dimensional nature of the transport processes is particularly pronounced under the collector plates land area, and has a major impact on the current distribution and predicted limiting current density. A parametric study with the single-phase computational model is also presented to investigate the effect of various operating, geometric and material parameters, including temperature, pressure, stoichiometric flow ratio, porosity and thickness of the gas diffusion layers, and the ratio between the channel with and the land area. The two-phase version of the computational model is used for a domain including a cooling channel adjacent to the cell. Simulations are performed over a range of current densities. The analysis reveals a complex interplay between several competing phase change mechanisms in the gas diffusion electrodes. Results show that the liquid water saturation is below 0.1 inside both anode and cathode gas diffusion layers. For the anode side, saturation increases with increasing current density, whereas at the cathode side saturation reaches a maximum at an intermediate current density (≈ 1.1Amp/cm2) and decreases thereafter. The simulation show that a variety of flow regimes for liquid water and vapour are present at different locations in the cell, and these depend further on current density. The PEMFC model presented in this thesis has a number of novel features that enhance the physical realism of the simulations and provide insight, particularly in heat and water management. The model should serve as a good foundation for future development of a computationally based design and optimization method.

Water and Thermal Management of Proton Exchange Membrane Fuel Cells

Water and Thermal Management of Proton Exchange Membrane Fuel Cells PDF Author: Kui Jiao
Publisher: Elsevier
ISBN: 032391117X
Category : Science
Languages : en
Pages : 402

Book Description
Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. Introduces the transport mechanism for each component of PEMFCs Presents modeling methods at different scales, including component, cell, stack and system scales Provides exercises in PEMFC modeling, along with examples of necessary codes Covers the latest advances in PEMFCs in a convenient and structured manner Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells

Modeling Transport Phenomena in Porous Media with Applications

Modeling Transport Phenomena in Porous Media with Applications PDF Author: Malay K. Das
Publisher: Springer
ISBN: 3319698664
Category : Technology & Engineering
Languages : en
Pages : 250

Book Description
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

Fuel Cells for Transportation

Fuel Cells for Transportation PDF Author: Prodip K. Das
Publisher: Elsevier
ISBN: 0323994865
Category : Science
Languages : en
Pages : 642

Book Description
Fuel Cells for Transportation: Fundamental Principles and Applications is the first comprehensive reference on the application of fuel cells for light- and heavy-duty transportation. Addressing the subject from both a materials and engineering perspective, the book examines integration, modeling, and optimization of fuel cells from fundamentals to the latest advances. Chapters address every aspect of fuel cell systems for transport applications, including performance optimization, stack characterization, low-cost materials and catalysts, design of bipolar plates and flow fields, water and thermal management, durability under automotive driving cycles, cold start, state of the art characterization, optimization of various components, and more. Each chapter reviews the fundamental principles of the topic before going on to examine the latest developments alongside current applications and real-world case studies. This is an essential reference for graduate students and researchers working on fuel cells for transport applications, as well as professional engineers involved in the application of fuel cells and clean energy and working in any sector of the transportation industry. Presents a comprehensive examination of the technologies, integration and application of fuel cells for transportation, from the fundamentals to the latest advances Examines the latest challenges, market outlooks and targets for fuel cells in light-duty and heavy-duty vehicles Offers solutions to fuel-cell system integration problems, optimization of operating conditions, and improvements for fuel-cell materials based on the latest developments Addresses key barriers to the commercial success of fuel cells for transportation, including durability, performance, materials and how to balance these factors

Investigation of Transport Phenomena in Polymer Electrolyte Membrane Fuel Cells

Investigation of Transport Phenomena in Polymer Electrolyte Membrane Fuel Cells PDF Author: Zhongying Shi
Publisher:
ISBN:
Category : Proton exchange membrane fuel cells
Languages : en
Pages : 404

Book Description