Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16
Book Description
Transonic Turbulent Flow Predictions With Two-Equation Turbulence Models
Turbulence Models and Their Application
Author: Tuncer Cebeci
Publisher: Springer Science & Business Media
ISBN: 9783540402886
Category : Science
Languages : en
Pages : 140
Book Description
After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.
Publisher: Springer Science & Business Media
ISBN: 9783540402886
Category : Science
Languages : en
Pages : 140
Book Description
After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.
Scientific and Technical Aerospace Reports
Turbulence Modeling for CFD: CD-ROM
Author: David C. Wilcox
Publisher:
ISBN: 9781928729082
Category : Fluid dynamics
Languages : en
Pages : 522
Book Description
Publisher:
ISBN: 9781928729082
Category : Fluid dynamics
Languages : en
Pages : 522
Book Description
Modeling Complex Turbulent Flows
Author: Manuel D. Salas
Publisher: Springer Science & Business Media
ISBN: 9780792355908
Category : Science
Languages : en
Pages : 402
Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Publisher: Springer Science & Business Media
ISBN: 9780792355908
Category : Science
Languages : en
Pages : 402
Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Turbulence Modeling Validation, Testing, and Development
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722849597
Category :
Languages : en
Pages : 100
Book Description
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively. Bardina, J. E. and Huang, P. G. and Coakley, T. J. Ames Research Center...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722849597
Category :
Languages : en
Pages : 100
Book Description
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively. Bardina, J. E. and Huang, P. G. and Coakley, T. J. Ames Research Center...
NAS Technical Summaries
Applied Mechanics Reviews
Viscous and Interacting Flow Field Effects
Author:
Publisher:
ISBN:
Category : Turbulent boundary layer
Languages : en
Pages : 316
Book Description
Publisher:
ISBN:
Category : Turbulent boundary layer
Languages : en
Pages : 316
Book Description