Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications PDF full book. Access full book title Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications by Ravneet Bhullar. Download full books in PDF and EPUB format.

Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications

Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications PDF Author: Ravneet Bhullar
Publisher:
ISBN:
Category :
Languages : en
Pages : 167

Book Description
Fossil fuels constitute 86% of global energy consumption. Even though fossil fuels have satisfied our energy needs for decades, they are non-renewable source of energy, and burning of fossil fuels is detrimental for the environment. Mining and extraction release toxic and heavy metals in the environment. The burning of fossil fuels release greenhouse carbon dioxide, SO2, NOX and volatile organic compounds into the atmosphere. Hence, the development of non-fossil fuel based alternative sources of energy is a logical solution to address these concerns. This thesis work primarily focused on design, development and understanding the chemistry of two-dimensional (2D) layered materials, particularly transition metal oxides, birnessite and lithium cobalt oxide as catalytic materials for the conversion of renewable energy into fuels and. In order to accomplish this, we principally studied the energy intensive oxygen evolution reaction (OER) in water splitting, and Fischer-Tropsch synthesis (FTS) to generate synthetic fuels. Birnessite is a 2D layered manganese dioxide material with intercalated Lewis cations and water molecules. Birnessites have been extensively investigated for their catalytic activity towards oxygen evolution reaction. In this work, we studied the influence of interstitial hydration structure on the catalytic efficiency of birnessite towards OER. The results of this study facilitated the development of upgraded, low-cost and, earth abundant catalyst for the OER. We demonstrated that the layered materials constructed from the same batch of nanosheets, but with different interlayer hydration structure exhibited significant differences in catalytic activity for chemical and electrochemical water oxidation. The dominant factor in these differences was the enhancement of relevant water fluctuations due to geometric frustration leading to enhanced electron transfer rate in the oxidation step of water splitting. Furthermore, lithium cobalt oxide (LiCoO2) and Co-doped birnessite were explored for their competence as precatalysts for Fischer-Tropsch synthesis (FTS). FTS is a commercial technology that allows converting synthesis gas, a mixture of CO and H2, into fuels and chemicals. This process is fundamentally important in the reduction of fossil fuel dependency for the energy needs. It has a great potential for generating synthetic fuels from renewable sources, such as biomass, after its gasification into synthesis gas. The synthetic fuels produced via this technology have a lower local environmental impact as compared to the conventional fuel, since it is practically free of sulfur and nitrogen impurities and yields lower exhaust emissions of hydrocarbons. The present study focused on the use of cobalt-based catalysts for the production of small to medium chain hydrocarbons (paraffins and olefins). In particular, the correlation between product selectivity and varying catalyst properties and reaction parameters was studied. In-situ studies revealed that LiCoO2 was reduced to metastable Co(hcp) and Co(fcc) nanoparticles during the activation process, providing a high surface area medium for the adsorption and hydrogenation of CO. The catalyst exhibited a high %CO conversion with small to medium chain hydrocarbon products (C2-C7). Co-doped birnessited was reduced to Co(hcp) and MnO(ccp) phases during the activation step of the FTS reaction. MnO provided an excellent medium for the dispersion and stabilization of the cobalt nanoparticles to catalyze CO-hydrogenation. Lower olefins and paraffins (C2-C4) were selectively synthesized in conjunction with low CO2 production and methane selectivity. These studies suggested that transition metal oxide based layered heterogeneous catalysts are capable of producing chemicals and fuels directly from H2-rich synthesis gas. This gas-to-chemicals process can greatly reduce CO2 emissions, thereby contributing to the mitigation of climate change and the energy needs of the future generations.

Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications

Transition Metal Oxide Layered Materials as Catalyst and Precatalyst for Green Energy Applications PDF Author: Ravneet Bhullar
Publisher:
ISBN:
Category :
Languages : en
Pages : 167

Book Description
Fossil fuels constitute 86% of global energy consumption. Even though fossil fuels have satisfied our energy needs for decades, they are non-renewable source of energy, and burning of fossil fuels is detrimental for the environment. Mining and extraction release toxic and heavy metals in the environment. The burning of fossil fuels release greenhouse carbon dioxide, SO2, NOX and volatile organic compounds into the atmosphere. Hence, the development of non-fossil fuel based alternative sources of energy is a logical solution to address these concerns. This thesis work primarily focused on design, development and understanding the chemistry of two-dimensional (2D) layered materials, particularly transition metal oxides, birnessite and lithium cobalt oxide as catalytic materials for the conversion of renewable energy into fuels and. In order to accomplish this, we principally studied the energy intensive oxygen evolution reaction (OER) in water splitting, and Fischer-Tropsch synthesis (FTS) to generate synthetic fuels. Birnessite is a 2D layered manganese dioxide material with intercalated Lewis cations and water molecules. Birnessites have been extensively investigated for their catalytic activity towards oxygen evolution reaction. In this work, we studied the influence of interstitial hydration structure on the catalytic efficiency of birnessite towards OER. The results of this study facilitated the development of upgraded, low-cost and, earth abundant catalyst for the OER. We demonstrated that the layered materials constructed from the same batch of nanosheets, but with different interlayer hydration structure exhibited significant differences in catalytic activity for chemical and electrochemical water oxidation. The dominant factor in these differences was the enhancement of relevant water fluctuations due to geometric frustration leading to enhanced electron transfer rate in the oxidation step of water splitting. Furthermore, lithium cobalt oxide (LiCoO2) and Co-doped birnessite were explored for their competence as precatalysts for Fischer-Tropsch synthesis (FTS). FTS is a commercial technology that allows converting synthesis gas, a mixture of CO and H2, into fuels and chemicals. This process is fundamentally important in the reduction of fossil fuel dependency for the energy needs. It has a great potential for generating synthetic fuels from renewable sources, such as biomass, after its gasification into synthesis gas. The synthetic fuels produced via this technology have a lower local environmental impact as compared to the conventional fuel, since it is practically free of sulfur and nitrogen impurities and yields lower exhaust emissions of hydrocarbons. The present study focused on the use of cobalt-based catalysts for the production of small to medium chain hydrocarbons (paraffins and olefins). In particular, the correlation between product selectivity and varying catalyst properties and reaction parameters was studied. In-situ studies revealed that LiCoO2 was reduced to metastable Co(hcp) and Co(fcc) nanoparticles during the activation process, providing a high surface area medium for the adsorption and hydrogenation of CO. The catalyst exhibited a high %CO conversion with small to medium chain hydrocarbon products (C2-C7). Co-doped birnessited was reduced to Co(hcp) and MnO(ccp) phases during the activation step of the FTS reaction. MnO provided an excellent medium for the dispersion and stabilization of the cobalt nanoparticles to catalyze CO-hydrogenation. Lower olefins and paraffins (C2-C4) were selectively synthesized in conjunction with low CO2 production and methane selectivity. These studies suggested that transition metal oxide based layered heterogeneous catalysts are capable of producing chemicals and fuels directly from H2-rich synthesis gas. This gas-to-chemicals process can greatly reduce CO2 emissions, thereby contributing to the mitigation of climate change and the energy needs of the future generations.

Ultrathin Oxide Layers for Solar and Electrocatalytic Systems

Ultrathin Oxide Layers for Solar and Electrocatalytic Systems PDF Author: Heinz Frei
Publisher: Royal Society of Chemistry
ISBN: 1839163712
Category : Technology & Engineering
Languages : en
Pages : 379

Book Description
Ultrathin metal oxide layers have emerged in recent years as a powerful approach for substantially enhancing the performance of photo, electro, or thermal catalytic systems for energy, in some cases even enabling the use of highly attractive materials previously found unsuitable. This development is due to the confluence of new synthetic preparation methods for ultrathin oxide layers and a more advanced understanding of interfacial phenomena on the nano and atomic scale. This book brings together the fundamentals and applications of ultrathin oxide layers while highlighting connections and future opportunities with the intent of accelerating the use of these materials and techniques for new and emerging applications of catalysis for energy. It comprehensively covers the state-of-the-art synthetic methods of ultrathin oxide layers, their structural and functional characterization, and the broad range of applications in the field of catalysis for energy. Edited by leaders in the field, and with contributions from global experts, this title will be of interest to graduate students and researchers across materials science and chemistry who are interested in ultrathin oxide layers and their applications in solar energy conversion, renewable energy, photocatalysis, electrocatalysis and protective coatings.

Transition Metal Oxides for Electrochemical Energy Storage

Transition Metal Oxides for Electrochemical Energy Storage PDF Author: Jagjit Nanda
Publisher: John Wiley & Sons
ISBN: 3527344934
Category : Technology & Engineering
Languages : en
Pages : 436

Book Description
Transition Metal Oxides for Electrochemical Energy Storage Explore this authoritative handbook on transition metal oxides for energy storage Metal oxides have become one of the most important classes of materials in energy storage and conversion. They continue to have tremendous potential for research into new materials and devices in a wide variety of fields. Transition Metal Oxides for Electrochemical Energy Storage delivers an insightful, concise, and focused exploration of the science and applications of metal oxides in intercalation-based batteries, solid electrolytes for ionic conduction, pseudocapacitive charge storage, transport and 3D architectures and interfacial phenomena and defects. The book serves as a one-stop reference for materials researchers seeking foundational and applied knowledge of the titled material classes. Transition Metal Oxides offers readers in-depth information covering electrochemistry, morphology, and both in situ and in operando characterization. It also provides novel approaches to transition metal oxide-enabled energy storage, like interface engineering and three-dimensional nanoarchitectures. Readers will also benefit from the inclusion of: A thorough introduction to the landscape and solid-state chemistry of transition metal oxides for energy storage An exploration of electrochemical energy storage mechanisms in transition metal oxides, including intercalation, pseudocapacitance, and conversion Practical discussions of the electrochemistry of transition metal oxides, including oxide/electrolyte interfaces and energy storage in aqueous electrolytes An examination of the characterization of transition metal oxides for energy storage Perfect for materials scientists, electrochemists, inorganic chemists, and applied physicists, Transition Metal Oxides for Electrochemical Energy Storage will also earn a place in the libraries of engineers in power technology and professions working in the electrotechnical industry seeking a one-stop reference on transition metal oxides for energy storage.

Metal Oxides

Metal Oxides PDF Author: J.L.G. Fierro
Publisher: CRC Press
ISBN: 9781420028126
Category : Science
Languages : en
Pages : 818

Book Description
The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis. The

Metal Oxide Catalysis, 2 Volume Set

Metal Oxide Catalysis, 2 Volume Set PDF Author: S. David Jackson
Publisher: John Wiley & Sons
ISBN: 9783527318155
Category : Science
Languages : en
Pages : 916

Book Description
With its two-volume structure, this handbook and ready reference allows for comprehensive coverage of both characterization and applications, while uniform editing throughout ensures that the structure remains consistent. The result is an up-to-date review of metal oxides in catalysis. The first volume covers a range of techniques that are used to characterize oxides, with each chapter written by an expert in the field. Volume 2 goes on to cover the use of metal oxides in catalytic reactions. For all chemists and engineers working in the field of heterogeneous catalysis.

Transition Metal Oxides

Transition Metal Oxides PDF Author: H.H. Kung
Publisher: Elsevier
ISBN: 0080887422
Category : Science
Languages : en
Pages : 299

Book Description
In this book the author presents an up-to-date summary of existing information on the structure, electronic properties, chemistry and catalytic properties of transition metal oxides.The subjects covered in the book can be divided into three sections. The first (chapters 1 to 3) covers the structural, physical, magnetic, and electronic properties of transition metal oxides. Although the emphasis is on surface properties, relevant bulk properties are also discussed. The second section (chapters 4 to 7) covers surface chemical properties. It includes topics that describe the importance of surface coordinative unsaturation in adsorption, the formation of surface acidity and the role of acidity in determining surface chemical properties, the nature and reactivities of adsorbed oxygen, and the surface chemistry in the reduction of oxides. The third section (chapters 8 to 14) is on the catalytic properties. Various catalytic reactions including decomposition, hydrogenation, isomerization, metathesis, selective oxidation, and reactions involving carbon oxides are discussed. Emphasis is placed more on reaction mechanisms and the role of catalysts than on kinetics and processes. Chapters on the preparation of oxide catalysts and on photo-assisted processes are also included. Whenever appropriate, relationships between various topics are indicated.Written for surface physicists, chemists, and catalytic engineers, the book will serve as a useful source of information for investigators and as a comprehensive overview of the subject for graduate students.

Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications

Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications PDF Author: Wenqiao Song
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Book Description
Nowadays, environmental concerns and the global energy crisis have become two of our greatest challenges. The main purpose of this dissertation research is to design highly active mesoporous materials that can efficiently catalyze environmental and energy related reactions. Surface properties can be easily tuned by thermal treatment and cation doping, resulting in improved catalytic activities. Synthesis and characterization of the materials, catalytic activities for carbon monoxide oxidation, oxygen reduction and oxygen evolution reactions, and mechanistic studies are covered in this thesis. The first part describes the synthesis of mesoporous cobalt oxides through an inverse micelle route for low temperature carbon monoxide oxidation applications. The prepared material showed much better activity and stability compared with commercial cobalt oxide due to its nanoparticle nature and porous structure. The catalytic performance under both dry and moisture rich conditions were tested. Detailed characterization of the materials suggested that high surface areas and the presence of surface oxygen vacancies were critical for enhanced activities. In real systems, structured catalysts such as monolithic substrates coated with a layer of active material are used instead of powder form catalysts. To evaluate the potential of our catalysts to be used in practical catalytic devices, mesoporous metal oxides (MnOx, Co3O4, CeO2) were coated on cordierite substrate by dip coating and in-situ growth and were used as low temperature diesel oxidation catalysts. The resulting materials showed promising catalytic performance. The effect of particle size, loading amount and Cu doping on the catalytic performance are discussed in detail. In the last part, mesoporous cobalt oxides were used as bifunctional catalysts for oxygen reduction and oxygen evolution reactions. If a catalyst can catalyze both reactions, it will have great potential in the application of rechargeable metal air batteries. Ni and Mn doping were introduced into the cobalt oxide material to increase the conductivity and active site population. The Ni incorporated cobalt oxide exhibited the best activity, which can be considered as a potential substituent for precious metal catalysts (Pt, Ir, Ru). Furthermore, the intrinsic structure-property relationships of the materials were established.

Metal Oxides and Related Solids for Electrocatalytic Water Splitting

Metal Oxides and Related Solids for Electrocatalytic Water Splitting PDF Author: Junlei Qi
Publisher: Elsevier
ISBN: 0323898068
Category : Technology & Engineering
Languages : en
Pages : 406

Book Description
Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides, metal phosphides, metal nitrides, metal borides, and more. Each chapter introduces important properties and material design strategies, including composite and morphology design. There is also an emphasis on cost-effective materials design and fabrication for optimized performance for electrocatalytic water splitting applications. Lastly, the book touches on recently developed in-situ characterization methods applied to observe and control the material synthesis process. - Introduces metal oxide-based materials for electrocatalytic water splitting applications, including their key properties, synthesis, design and fabrication strategies - Reviews the most relevant materials design strategies, including defect engineering, interface engineering, and doping engineering - Discusses the pros and cons of metal oxide-based materials for water splitting applications to aid in materials selection

Metal Oxides/Chalcogenides and Composites

Metal Oxides/Chalcogenides and Composites PDF Author: Aneeya Kumar Samantara
Publisher: Springer
ISBN: 3030248615
Category : Technology & Engineering
Languages : en
Pages : 83

Book Description
This book covers the recent development of metal oxides, hydroxides and their carbon composites for electrochemical oxidation of water in the production of hydrogen and oxygen as fuels. It includes a detailed discussion on synthesis methodologies for the metal oxides/hydroxides, structural/morphological characterizations, and the key parameters (Tafel plot, Turnover frequency, Faradic efficiency, overpotential, long cycle life etc.) needed to evaluate the electrocatalytic activity of the materials. Additionally, the mechanism behind the electro oxidation process is presented. Readers will find a comprehensive source on the close correlation between metal oxides, hydroxides, composites, and their properties and importance in the generation of hydrogen and oxygen from water. The depletion of fossil fuels from the earth’s crust, and related environmental issues such as climate change, demand that we search for alternative energy resources to achieve some form of sustainable future. In this regard, much scientific research has been devoted to technologies such as solar cells, wind turbines, fuel cells etc. Among them fuel cells attract much attention because of their versatility and efficiency. In fuel cells, different fuels such as hydrogen, CO2, alcohols, acids, methane, oxygen/air, etc. are used as the fuel, and catalysts are employed to produce a chemical reaction for generating electricity. Hence, it is very important to produce these fuels in an efficient, eco-friendly, and cost effective manner. The electrochemical splitting of water is an environmentally friendly process to produce hydrogen (the greener fuel used in fuel cells), but the efficiencies of these hydrogen evolution reactions (cathodic half reaction) are strongly dependent on the anodic half reaction (oxygen evolution reaction), i.e., the better the anodic half, the better will be the cathodic reaction. Further, this oxygen evolution reaction depends on the types of active electrocatalysts used. Though many more synthetic approaches have been explored and different electrocatalysts developed, oxide and hydroxide-based nanomaterials and composites (with graphene, carbon nanotubes etc.) show better performance. This may be due to the availability of more catalytic surface area and electro active centers to carry out the catalysis process.

Design, Synthesis and Characterization of Transition Metal Oxide/sulfide-based Catalysts for Environmental and Energy Applications

Design, Synthesis and Characterization of Transition Metal Oxide/sulfide-based Catalysts for Environmental and Energy Applications PDF Author: Ran Miao
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Book Description
In this thesis, I will focus on the synthesis of transition metal oxide/sulfide-based composite materials for different types of environmental and sustainable energy applications under ambient conditions. Controlled synthesis of these catalysts with unique crystalline structures, physical, and chemical properties will be carried out to achieve an improved catalytic activity. The correlations between the material structure and catalytic activity will be investigated by various characterization techniques. Finally, the catalytic activities for the resulting materials will be evaluated for environmental friendly photocatalytic dye degradation and electrochemical water splitting reaction, respectively.