Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV PDF full book. Access full book title Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV by Ajibola Fowowe. Download full books in PDF and EPUB format.

Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV

Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV PDF Author: Ajibola Fowowe
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Book Description
In recent times, there has been an increase in the use and application of unmanned aerial vehicles (UAVs). UAVs are used for various operations ranging from military applications to civilian purposes such as traffic monitoring, photography, surveillance and others. Within the UAV family, rotorcrafts take precedence over the fixed wing aircraft especially because of their unique features such as vertical takeoff and landing, increased payload, high maneuverability and more. They can be used to perform dangerous tasks and access environments that pose danger to man such as observatory wood and building fire, military purposes etc. This project focused on one of the various applications of the UAVs; cooperative operations between UAVs and ground vehicles. Scenarios may arise where we need the UAV to take on independent surveillance task in an unknown environment. I present a complete solution for the visual navigation of a small-scale, low-cost quadrotor in unknown environments. My approach relies solely on a monocular camera as the main sensor and therefore does not need external tracking aids like GPS or visual markers. Computations are carried out on an external laptop that communicates over wireless LAN with the quadrotor using Robot Operating System (ROS). This approach consists of three major components: a monocular SLAM system for pose estimation, an extended Kalman filter, which includes a full model of the drone's flight and control dynamics to fuse and synchronize all available data and to compensate for delays arising from the communication process and the computations required and lastly, a PID controller to control the position and orientation of the drone. During the cooperative operation, the ground vehicle acts as the master, a mobile launch/landing pad for the UAV. Cooperative operation between mobile robots can be very critical in complex scenarios such as the UAV mapping out an area for obstacles and optimal navigation path for the UGV, also the UAV can be sent to areas inaccessible by the ground vehicle for observation and it returns back to the ground vehicle after this operation.

Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV

Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV PDF Author: Ajibola Fowowe
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Book Description
In recent times, there has been an increase in the use and application of unmanned aerial vehicles (UAVs). UAVs are used for various operations ranging from military applications to civilian purposes such as traffic monitoring, photography, surveillance and others. Within the UAV family, rotorcrafts take precedence over the fixed wing aircraft especially because of their unique features such as vertical takeoff and landing, increased payload, high maneuverability and more. They can be used to perform dangerous tasks and access environments that pose danger to man such as observatory wood and building fire, military purposes etc. This project focused on one of the various applications of the UAVs; cooperative operations between UAVs and ground vehicles. Scenarios may arise where we need the UAV to take on independent surveillance task in an unknown environment. I present a complete solution for the visual navigation of a small-scale, low-cost quadrotor in unknown environments. My approach relies solely on a monocular camera as the main sensor and therefore does not need external tracking aids like GPS or visual markers. Computations are carried out on an external laptop that communicates over wireless LAN with the quadrotor using Robot Operating System (ROS). This approach consists of three major components: a monocular SLAM system for pose estimation, an extended Kalman filter, which includes a full model of the drone's flight and control dynamics to fuse and synchronize all available data and to compensate for delays arising from the communication process and the computations required and lastly, a PID controller to control the position and orientation of the drone. During the cooperative operation, the ground vehicle acts as the master, a mobile launch/landing pad for the UAV. Cooperative operation between mobile robots can be very critical in complex scenarios such as the UAV mapping out an area for obstacles and optimal navigation path for the UGV, also the UAV can be sent to areas inaccessible by the ground vehicle for observation and it returns back to the ground vehicle after this operation.

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle PDF Author: Moussa Labbadi
Publisher: Springer Nature
ISBN: 3030810143
Category : Technology & Engineering
Languages : en
Pages : 263

Book Description
This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

UAV Cooperative Decision and Control

UAV Cooperative Decision and Control PDF Author: Tal Shima
Publisher: SIAM
ISBN: 0898716640
Category : Mathematics
Languages : en
Pages : 179

Book Description
An authoritative reference on cooperative decision and control of unmanned aerial vehicles.

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles PDF Author: Hao Liu
Publisher: CRC Press
ISBN: 1000788539
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Trajectory Tracking and Payload Dropping of an Unmanned Quadrotor Helicopter Based on GS-PID and Backstepping Control

Trajectory Tracking and Payload Dropping of an Unmanned Quadrotor Helicopter Based on GS-PID and Backstepping Control PDF Author: Jing Qiao
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Book Description
Two useful control techniques, the Gain-Scheduled Proportional-Integral-Derivative (GS-PID) control and backstepping control, have been applied by using quadrotor Unmanned Aerial Vehicle (UAV) in the applications of trajectory tracking and payload dropping operations in this thesis. These control algorithms are analyzed and verified through software simulations and experimental tests. The dynamic model of the quadrotor UAV is firstly established using Newton-Euler laws. The quadrotor comes with a symmetric, nonlinear and multiple-input-multiple output (MIMO) dynamic model. The GS-PID control algorithm is implemented firstly in take-off, trajectory tracking, payload dropping, and landing periods of flight in trajectory tracking and payload dropping scenarios. Unlike other control algorithms that tend to linearize nonlinear systems, backstepping works without cancelling the nonlinearities in the system. This leads to more flexible designs of the control model. The backstepping control is implemented in this thesis for better performance of the quadrotor UAV for the two scenarios as well. Both control algorithms are implemented on the parameters of an unmanned quadrotor helicopter platform known as Qball-X4 available at the Networked Autonomous Vehicles Lab (NAVL) of Concordia University. Using MATLAB/Simulink to build the simulation control model, the flight simulation of the Qball-X4 is carried out for the trajectory tracking and the payload dropping. In order to further investigate these two control approaches, the Qball-X4 is used for experimental verification on payload dropping performance. The results indicate that both algorithms can obtain acceptable performance, but the backstepping controller proves to be a better performed one.

Tracking of Ground Mobile Targets by Quandrotor Unmanned Aerial Vehicles

Tracking of Ground Mobile Targets by Quandrotor Unmanned Aerial Vehicles PDF Author: Ruoyu Tan
Publisher:
ISBN:
Category :
Languages : en
Pages : 95

Book Description
An Unmanned Air Vehicle (UAV) is an aircraft without a human pilot on board. It can be controlled either autonomously by computers onboard, or using a remote control by a pilot on the ground, or in another vehicle. In both military and civilian sectors, UAVs are quickly obtaining popularity and expected to expand dramatically in the years to come. As UAVs gain more attention, one of the immediate requirements would be to have UAVs work as much autonomously as possible. One of the common tasks that UAVs would be engaged in is target tracking which has various potential applications in military field, law-enforcement, wildlife protection effort, and so on. This thesis focuses on development of a controller for UAVs to track ground target. In particular, this thesis focuses on quadrotor UAV, which is a multicopter that is lifted and propelled using four motors. Admittedly, several target tracking control methods have been developed in recent years. However, only a few of them have been applied on a quadrotor. Most of these tracking methods, particularly those based on Proportional Derivative (PD) control laws, which have been applied on quadrotors, are not time efficient due to practical acceleration constraint and a number of parameters that need to be tuned. The UAV control problem can be divided into 4 sub-problems: Position Control, Motor Control, Trajectory Tracking and Trajectory Generation. In this thesis, the dynamic equations of motion for quadrotors and a Proportional Derivative control law is derived to solve the problems of Position Control, Motor Control and Trajectory Tracking. A Proportional Navigation (PN) based switching strategy is proposed to address the problem of Trajectory Generation. The experiments and numerical simulations are performed using non-maneuvering and maneuvering targets. The simulation results show that the proposed PN based switching strategy not only carries out effective tracking but also results into smaller oscillations and errors when compared to the widely used PD tracking method. The switching strategy, as proposed as a solution to target tracking problem, leaves an important question with regard to when should the switching happen. It is intuitive that the time of switching will play a role in how fast the UAV converges to the target. The second problem considered in this thesis relates to the optimal time of switching that would minimize the positional error between the UAV and the target. An optimal switching strategy is proposed to obtain the optimal switching time for both non-maneuvering and maneuvering targets. Analytical solutions that generate trajectories based on PN and PD methods are used in this strategy. The numerical simulations validate the optimality, reliability, and accuracy of the proposed method for both non-maneuvering and maneuvering targets.

Adaptive Hybrid Control of Quadrotor Drones

Adaptive Hybrid Control of Quadrotor Drones PDF Author: Nihal Dalwadi
Publisher: Springer Nature
ISBN: 9811997446
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.

Trajectory Planning and Control of Collaborative Systems

Trajectory Planning and Control of Collaborative Systems PDF Author: Etienne Servais
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This thesis is dedicated to the creation of a complete framework, from high-level to low-level, of trajectory generation for a group of independent dynamical systems. This framework, based for the trajectory generation, on the resolution of Burgers equation, is applied to a novel model of trirotor UAV and uses the flatness of the two levels of dynamical systems.The first part of this thesis is dedicated to the generation of trajectories. Formal solutions to the heat equation are created using the differential flatness of this equation. These solutions are transformed into solutions to Burgers' equation through Hopf-Cole transformation to match the desired formations. They are optimized to match specific requirements. Several examples of trajectories are given.The second part is dedicated to the autonomous trajectory tracking by a trirotor UAV. This UAV is totally actuated and a nonlinear closed-loop controller is suggested. This controller is tested on the ground and in flight by tracking, rolling or flying, a trajectory. A model is presented and a control approach is suggested to transport a pendulum load.

Robust Nonlinear Trajectory Tracking and Control of Quadrotor UAV

Robust Nonlinear Trajectory Tracking and Control of Quadrotor UAV PDF Author: Tinashe Chingozha
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 294

Book Description


Optimized UAV Trajectory Tracking of a Dynamically Unknown Ground Target

Optimized UAV Trajectory Tracking of a Dynamically Unknown Ground Target PDF Author: Daniel Genova
Publisher:
ISBN: 9781658414210
Category :
Languages : en
Pages :

Book Description
Trajectory tracking with Model Predictive Control (MPC) is a well-researched area in unmanned aerial vehicle (UAV) controls. Most research has gone into developing a robust Unmanned Aerial System (UAS) for a UAV to follow an a priori reference trajectory. This research proposes developing a UAS that extends the use of MPC UAV trajectory tracking to follow a ground target with unknown dynamics. In this scenario, a future reference trajectory is unknown and therefore an imprecise trajectory reference is generated online. This research discusses using polynomial linear regression (PLR) using only a posteriori information of the target to provide a reference trajectory to a non-linear MPC (NMPC) position controller. This work shows that using an NMPC position controller in this fashion still out performs a Proportional Integral Derivative (PID) controller for tracking unknown trajectories. The proposed UAS was able to track a ground robot driven with aggressive, evasive maneuvers with an RMSE error of about 5 cm.