Author: Juan Carlos Alonso
Publisher: Mdpi AG
ISBN: 9783036506746
Category : Science
Languages : en
Pages : 170
Book Description
Bacterial toxin-antitoxin (TA) systems, which are ubiquitously present in bacterial genomes, are not essential for normal cell proliferation. The TA systems regulate fundamental cellular processes, facilitate survival under stress conditions, have essential roles in virulence and represent potential therapeutic targets. These genetic TA loci are also shown to be involved in the maintenance of successful multidrug-resistant mobile genetic elements. The TA systems are classified as types I to VI, according to the nature of the antitoxin and to the mode of toxin inhibition. Type II TA systems encode a labile antitoxin and its stable toxin; degradation of the antitoxin renders a free toxin, which is bacteriostatic by nature. A free toxin generates a reversible state with low metabolic activity (quiescence) by affecting important functions of bacterial cells such as transcription, translation, DNA replication, replication and cell-wall synthesis, biofilm formation, phage predation, the regulation of nucleotide pool, etc., whereas antitoxins are toxin inhibitors. Under stress conditions, the TA systems might form networks. To understand the basis of the unique response of TA systems to stress, the prime causes of the emergence of drug-resistant strains, and their contribution to therapy failure and the development of chronic and recurrent infections, must be known in order to grasp how TA systems contribute to the mechanisms of phenotypic heterogeneity and pathogenesis that will enable the rational development of new treatments for infections caused by pathogens.
Toxin-Antitoxin Systems in Pathogenic Bacteria
Author: Juan Carlos Alonso
Publisher: Mdpi AG
ISBN: 9783036506746
Category : Science
Languages : en
Pages : 170
Book Description
Bacterial toxin-antitoxin (TA) systems, which are ubiquitously present in bacterial genomes, are not essential for normal cell proliferation. The TA systems regulate fundamental cellular processes, facilitate survival under stress conditions, have essential roles in virulence and represent potential therapeutic targets. These genetic TA loci are also shown to be involved in the maintenance of successful multidrug-resistant mobile genetic elements. The TA systems are classified as types I to VI, according to the nature of the antitoxin and to the mode of toxin inhibition. Type II TA systems encode a labile antitoxin and its stable toxin; degradation of the antitoxin renders a free toxin, which is bacteriostatic by nature. A free toxin generates a reversible state with low metabolic activity (quiescence) by affecting important functions of bacterial cells such as transcription, translation, DNA replication, replication and cell-wall synthesis, biofilm formation, phage predation, the regulation of nucleotide pool, etc., whereas antitoxins are toxin inhibitors. Under stress conditions, the TA systems might form networks. To understand the basis of the unique response of TA systems to stress, the prime causes of the emergence of drug-resistant strains, and their contribution to therapy failure and the development of chronic and recurrent infections, must be known in order to grasp how TA systems contribute to the mechanisms of phenotypic heterogeneity and pathogenesis that will enable the rational development of new treatments for infections caused by pathogens.
Publisher: Mdpi AG
ISBN: 9783036506746
Category : Science
Languages : en
Pages : 170
Book Description
Bacterial toxin-antitoxin (TA) systems, which are ubiquitously present in bacterial genomes, are not essential for normal cell proliferation. The TA systems regulate fundamental cellular processes, facilitate survival under stress conditions, have essential roles in virulence and represent potential therapeutic targets. These genetic TA loci are also shown to be involved in the maintenance of successful multidrug-resistant mobile genetic elements. The TA systems are classified as types I to VI, according to the nature of the antitoxin and to the mode of toxin inhibition. Type II TA systems encode a labile antitoxin and its stable toxin; degradation of the antitoxin renders a free toxin, which is bacteriostatic by nature. A free toxin generates a reversible state with low metabolic activity (quiescence) by affecting important functions of bacterial cells such as transcription, translation, DNA replication, replication and cell-wall synthesis, biofilm formation, phage predation, the regulation of nucleotide pool, etc., whereas antitoxins are toxin inhibitors. Under stress conditions, the TA systems might form networks. To understand the basis of the unique response of TA systems to stress, the prime causes of the emergence of drug-resistant strains, and their contribution to therapy failure and the development of chronic and recurrent infections, must be known in order to grasp how TA systems contribute to the mechanisms of phenotypic heterogeneity and pathogenesis that will enable the rational development of new treatments for infections caused by pathogens.
Bacterial Persistence
Author: Jan Michiels
Publisher: Humana
ISBN: 9781493928538
Category : Medical
Languages : en
Pages : 0
Book Description
This volume presents a comprehensive collection of methods that have been instrumental to the current understanding of bacterial persisters. Chapters in the book cover topics ranging from general methods for measuring persister levels in Escherichia coli cultures, protocols for the determination of the persister subpopulation in Candida albicans, quantitative measurements of Type I and Type II persisters using ScanLag, to in vitro and in vivo models for the study of the intracellular activity of antibiotics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Persistence: Methods and Protocols brings together the most respected researchers in bacterial persistence whose studies will remain vital to understanding this field for many years to come.
Publisher: Humana
ISBN: 9781493928538
Category : Medical
Languages : en
Pages : 0
Book Description
This volume presents a comprehensive collection of methods that have been instrumental to the current understanding of bacterial persisters. Chapters in the book cover topics ranging from general methods for measuring persister levels in Escherichia coli cultures, protocols for the determination of the persister subpopulation in Candida albicans, quantitative measurements of Type I and Type II persisters using ScanLag, to in vitro and in vivo models for the study of the intracellular activity of antibiotics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Persistence: Methods and Protocols brings together the most respected researchers in bacterial persistence whose studies will remain vital to understanding this field for many years to come.
Persister Cells and Infectious Disease
Author: Kim Lewis
Publisher: Springer Nature
ISBN: 3030252418
Category : Medical
Languages : en
Pages : 300
Book Description
This volume is a collection of chapters from the leading experts in the relatively new and burgeoning field of persister cell studies. Persisters play a leading role in the recalcitrance of chronic infections, and enable the development of classical antibiotic resistance. The focus of the book is on studies that provide an understanding of the mechanisms of persister formation, antibiotic tolerance and role in disease, at the molecular level.
Publisher: Springer Nature
ISBN: 3030252418
Category : Medical
Languages : en
Pages : 300
Book Description
This volume is a collection of chapters from the leading experts in the relatively new and burgeoning field of persister cell studies. Persisters play a leading role in the recalcitrance of chronic infections, and enable the development of classical antibiotic resistance. The focus of the book is on studies that provide an understanding of the mechanisms of persister formation, antibiotic tolerance and role in disease, at the molecular level.
Microbial Toxins
Author: P. Gopalakrishnakone
Publisher: Springer
ISBN: 9789400764484
Category : Medical
Languages : en
Pages : 502
Book Description
In recent years, the field of Toxinology has expanded substantially. On the one hand it studies venomous animals, plants and micro organisms in detail to understand their mode of action on targets. While on the other, it explores the biochemical composition, genomics and proteomics of toxins and venoms to understand their three interaction with life forms (especially humans), development of antidotes and exploring their pharmacological potential. Therefore, Toxinology has deep linkages with biochemistry, molecular biology, anatomy and pharmacology. In addition, there is a fast developing applied subfield, clinical toxinology, which deals with understanding and managing medical effects of toxins on human body. Given the huge impact of toxin-based deaths globally, and the potential of venom in generation of drugs for so-far incurable diseases (for example, Diabetes, Chronic Pain), the continued research and growth of the field is imminent. This has led to the growth of research in the area and the consequent scholarly output by way of publications in journals and books. Despite this ever growing body of literature within biomedical sciences, there is still no all-inclusive reference work available that collects all of the important biochemical, biomedical and clinical insights relating to Toxinology. The Handbook of Toxinology aims to address this gap and cover the field of Toxinology comprehensively.
Publisher: Springer
ISBN: 9789400764484
Category : Medical
Languages : en
Pages : 502
Book Description
In recent years, the field of Toxinology has expanded substantially. On the one hand it studies venomous animals, plants and micro organisms in detail to understand their mode of action on targets. While on the other, it explores the biochemical composition, genomics and proteomics of toxins and venoms to understand their three interaction with life forms (especially humans), development of antidotes and exploring their pharmacological potential. Therefore, Toxinology has deep linkages with biochemistry, molecular biology, anatomy and pharmacology. In addition, there is a fast developing applied subfield, clinical toxinology, which deals with understanding and managing medical effects of toxins on human body. Given the huge impact of toxin-based deaths globally, and the potential of venom in generation of drugs for so-far incurable diseases (for example, Diabetes, Chronic Pain), the continued research and growth of the field is imminent. This has led to the growth of research in the area and the consequent scholarly output by way of publications in journals and books. Despite this ever growing body of literature within biomedical sciences, there is still no all-inclusive reference work available that collects all of the important biochemical, biomedical and clinical insights relating to Toxinology. The Handbook of Toxinology aims to address this gap and cover the field of Toxinology comprehensively.
Bacteria: A Very Short Introduction
Author: Sebastian G. B. Amyes
Publisher: OUP Oxford
ISBN: 0191654086
Category : Medical
Languages : en
Pages : 161
Book Description
Bacteria form a fundamental branch of life. They are the oldest forms of life as we know it, and they are still the most prolific living organisms. They inhabit every part of the Earth's surface, its ocean depths, and even terrains such as boiling hot springs. They are most familiar as agents of disease, but benign bacteria are critical to the recycling of elements and all ecology, as well as to human health. In this Very Short Introduction, Sebastian Amyes explores the nature of bacteria, their origin and evolution, bacteria in the environment, and bacteria and disease. In looking at our efforts to manage co-evolving bacteria, he also considers the challenges of resistance to antibiotics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191654086
Category : Medical
Languages : en
Pages : 161
Book Description
Bacteria form a fundamental branch of life. They are the oldest forms of life as we know it, and they are still the most prolific living organisms. They inhabit every part of the Earth's surface, its ocean depths, and even terrains such as boiling hot springs. They are most familiar as agents of disease, but benign bacteria are critical to the recycling of elements and all ecology, as well as to human health. In this Very Short Introduction, Sebastian Amyes explores the nature of bacteria, their origin and evolution, bacteria in the environment, and bacteria and disease. In looking at our efforts to manage co-evolving bacteria, he also considers the challenges of resistance to antibiotics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Bacterial Signaling
Author: Reinhard Krämer
Publisher: John Wiley & Sons
ISBN: 3527629246
Category : Science
Languages : en
Pages : 513
Book Description
Providing a comprehensive insight into cellular signaling processes in bacteria with a special focus on biotechnological implications, this is the first book to cover intercellular as well as intracellular signaling and its relevance for biofilm formation, host pathogen interactions, symbiotic relationships, and photo- and chemotaxis. In addition, it deals in detail with principal bacterial signaling mechanisms -- making this a valuable resource for all advanced students in microbiology. Dr. Krämer is a world-renowned expert in intracellular signaling and its implications for biotechnology processes, while Dr. Jung is an expert on intercellular signaling and its relevance for biomedicine and agriculture.
Publisher: John Wiley & Sons
ISBN: 3527629246
Category : Science
Languages : en
Pages : 513
Book Description
Providing a comprehensive insight into cellular signaling processes in bacteria with a special focus on biotechnological implications, this is the first book to cover intercellular as well as intracellular signaling and its relevance for biofilm formation, host pathogen interactions, symbiotic relationships, and photo- and chemotaxis. In addition, it deals in detail with principal bacterial signaling mechanisms -- making this a valuable resource for all advanced students in microbiology. Dr. Krämer is a world-renowned expert in intracellular signaling and its implications for biotechnology processes, while Dr. Jung is an expert on intercellular signaling and its relevance for biomedicine and agriculture.
Biological Mass Spectrometry
Author: A.L. Burlingame
Publisher: Gulf Professional Publishing
ISBN: 9780121828073
Category : Science
Languages : en
Pages : 520
Book Description
Describes and integrates the techniques of many advances in both chromatographic and mass spectrometric technologies. This book also covers various biophysical applications, such as H/D exchange for study of conformations, protein-protein and protein-metal and ligand interactions. It also describes atto-to-zepto-mole quantitation of 14C and 3H.
Publisher: Gulf Professional Publishing
ISBN: 9780121828073
Category : Science
Languages : en
Pages : 520
Book Description
Describes and integrates the techniques of many advances in both chromatographic and mass spectrometric technologies. This book also covers various biophysical applications, such as H/D exchange for study of conformations, protein-protein and protein-metal and ligand interactions. It also describes atto-to-zepto-mole quantitation of 14C and 3H.
Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria
Author: Frans J. de Bruijn
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions
Author: Seyed Ehtesham Hasnain
Publisher: Springer
ISBN: 9789813294127
Category : Medical
Languages : en
Pages : 514
Book Description
This book reviews recent advances in the molecular and infection biology, pathology, and molecular epidemiology of Mycobacterium tuberculosis, as well as the identification and validation of novel molecular drug targets for the treatment of this mycobacterial disease. Despite being completely curable, tuberculosis is still one of the leading global causes of death. M. tuberculosis, the causative organism – one of the smartest pathogens known – adopts highly intelligent strategies for survival and pathogenesis. Presenting a wealth of information on the molecular infection biology of M. tuberculosis, as well as nontuberculous mycobacteria (NTM), the book provides an overview of the functional role of the PE/PPE group of proteins, which is exclusive to the genus Mycobacteria, of host-pathogen interactions, and virulence. It also explores the pathogenesis of the infection, pathology, epidemiology, and diagnosis of NTM. Finally it discusses current and novel approaches in vaccine development against tuberculosis, including the role of nanotechnology. With state-of-the-art contributions from experts in the respective domains, this book is an informative resource for practitioners as well as medical postgraduate students and researchers.
Publisher: Springer
ISBN: 9789813294127
Category : Medical
Languages : en
Pages : 514
Book Description
This book reviews recent advances in the molecular and infection biology, pathology, and molecular epidemiology of Mycobacterium tuberculosis, as well as the identification and validation of novel molecular drug targets for the treatment of this mycobacterial disease. Despite being completely curable, tuberculosis is still one of the leading global causes of death. M. tuberculosis, the causative organism – one of the smartest pathogens known – adopts highly intelligent strategies for survival and pathogenesis. Presenting a wealth of information on the molecular infection biology of M. tuberculosis, as well as nontuberculous mycobacteria (NTM), the book provides an overview of the functional role of the PE/PPE group of proteins, which is exclusive to the genus Mycobacteria, of host-pathogen interactions, and virulence. It also explores the pathogenesis of the infection, pathology, epidemiology, and diagnosis of NTM. Finally it discusses current and novel approaches in vaccine development against tuberculosis, including the role of nanotechnology. With state-of-the-art contributions from experts in the respective domains, this book is an informative resource for practitioners as well as medical postgraduate students and researchers.
The Pangenome
Author: Hervé Tettelin
Publisher: Springer Nature
ISBN: 3030382818
Category : Science
Languages : en
Pages : 311
Book Description
This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.
Publisher: Springer Nature
ISBN: 3030382818
Category : Science
Languages : en
Pages : 311
Book Description
This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.