Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case PDF full book. Access full book title Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case by Martin C. Olsson. Download full books in PDF and EPUB format.

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case PDF Author: Martin C. Olsson
Publisher: American Mathematical Soc.
ISBN: 082185240X
Category : Mathematics
Languages : en
Pages : 170

Book Description
The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case PDF Author: Martin C. Olsson
Publisher: American Mathematical Soc.
ISBN: 082185240X
Category : Mathematics
Languages : en
Pages : 170

Book Description
The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.

Dimer Models and Calabi-Yau Algebras

Dimer Models and Calabi-Yau Algebras PDF Author: Nathan Broomhead
Publisher: American Mathematical Soc.
ISBN: 0821853082
Category : Mathematics
Languages : en
Pages : 101

Book Description
In this article the author uses techniques from algebraic geometry and homological algebra, together with ideas from string theory to construct a class of 3-dimensional Calabi-Yau algebras. The Calabi-Yau property appears throughout geometry and string theory and is increasingly being studied in algebra. He further shows that the algebras constructed are examples of non-commutative crepant resolutions (NCCRs), in the sense of Van den Bergh, of Gorenstein affine toric threefolds. Dimer models, first studied in theoretical physics, give a way of writing down a class of non-commutative algebras, as the path algebra of a quiver with relations obtained from a `superpotential'. Some examples are Calabi-Yau and some are not. The author considers two types of `consistency' conditions on dimer models, and shows that a `geometrically consistent' dimer model is `algebraically consistent'. He proves that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras. This is the key step which allows him to prove that these algebras are NCCRs of the Gorenstein affine toric threefolds associated to the dimer models.

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations PDF Author: Igor Burban
Publisher: American Mathematical Soc.
ISBN: 0821872923
Category : Mathematics
Languages : en
Pages : 144

Book Description
"November 2012, volume 220, number 1035 (third of 4 numbers)."

Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$

Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$ PDF Author: Aleksandr Sergeevich Kleshchëv
Publisher: American Mathematical Soc.
ISBN: 0821874314
Category : Mathematics
Languages : en
Pages : 148

Book Description
There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups.

On the Algebraic Foundations of Bounded Cohomology

On the Algebraic Foundations of Bounded Cohomology PDF Author: Theo Bühler
Publisher: American Mathematical Soc.
ISBN: 0821853112
Category : Mathematics
Languages : en
Pages : 126

Book Description
It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees PDF Author: Lee Mosher
Publisher: American Mathematical Soc.
ISBN: 0821847120
Category : Mathematics
Languages : en
Pages : 118

Book Description
This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.

Jumping Numbers of a Simple Complete Ideal in a Two-Dimensional Regular Local Ring

Jumping Numbers of a Simple Complete Ideal in a Two-Dimensional Regular Local Ring PDF Author: Tarmo Järvilehto
Publisher: American Mathematical Soc.
ISBN: 0821848119
Category : Mathematics
Languages : en
Pages : 93

Book Description
The multiplier ideals of an ideal in a regular local ring form a family of ideals parameterized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript the author gives an explicit formula for the jumping numbers of a simple complete ideal in a two-dimensional regular local ring. In particular, he obtains a formula for the jumping numbers of an analytically irreducible plane curve. He then shows that the jumping numbers determine the equisingularity class of the curve.

Parabolic Systems with Polynomial Growth and Regularity

Parabolic Systems with Polynomial Growth and Regularity PDF Author: Frank Duzaar
Publisher: American Mathematical Soc.
ISBN: 0821849670
Category : Mathematics
Languages : en
Pages : 135

Book Description
The authors establish a series of optimal regularity results for solutions to general non-linear parabolic systems $ u_t- \mathrm{div} \ a(x,t,u,Du)+H=0,$ under the main assumption of polynomial growth at rate $p$ i.e. $ a(x,t,u,Du) \leq L(1+ Du ^{p-1}), p \geq 2.$ They give a unified treatment of various interconnected aspects of the regularity theory: optimal partial regularity results for the spatial gradient of solutions, the first estimates on the (parabolic) Hausdorff dimension of the related singular set, and the first Calderon-Zygmund estimates for non-homogeneous problems are achieved here.

Multicurves and Equivariant Cohomology

Multicurves and Equivariant Cohomology PDF Author: Neil P. Strickland
Publisher: American Mathematical Soc.
ISBN: 0821849018
Category : Mathematics
Languages : en
Pages : 130

Book Description
Let $A$ be a finite abelian group. The author sets up an algebraic framework for studying $A$-equivariant complex-orientable cohomology theories in terms of a suitable kind of equivariant formal group. He computes the equivariant cohomology of many spaces in these terms, including projective bundles (and associated Gysin maps), Thom spaces, and infinite Grassmannians.

The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$

The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$ PDF Author: Toshiyuki Kobayashi
Publisher: American Mathematical Soc.
ISBN: 0821847570
Category : Mathematics
Languages : en
Pages : 145

Book Description
The authors introduce a generalization of the Fourier transform, denoted by $\mathcal{F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1,n_2)$ on $\mathbb{R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ on $L^2(\mathbb{R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1,n_2+1)$ on the other hand.