Towards an Ultra-Low Energy Computation with Asynchronous Circuits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Towards an Ultra-Low Energy Computation with Asynchronous Circuits PDF full book. Access full book title Towards an Ultra-Low Energy Computation with Asynchronous Circuits by Tsung-Te Liu. Download full books in PDF and EPUB format.

Towards an Ultra-Low Energy Computation with Asynchronous Circuits

Towards an Ultra-Low Energy Computation with Asynchronous Circuits PDF Author: Tsung-Te Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Book Description
Emerging biomedical applications would benefit from the availability of digital processors with substantially improved energy-efficiency. One approach to realize ultra-low energy processors is to scale the supply voltage aggressively to near or below the transistor threshold, yet the major increase in delay variability under process, voltage and temperature variations combined with the dominance of leakage power makes robust near- and sub-threshold computations and further voltage scaling extremely challenging. This research focuses on the design and implementation of robust and energy-efficient computation architectures by employing an asynchronous self-timed design methodology. A statistical framework is first presented to analyze the energy and delay of CMOS digital circuits considering a variety of timing methodologies. The proposed analysis framework combines variability and statistical performance models, which enables designers to efficiently evaluate circuit performance, and determine the optimal timing strategy, pipeline depth and supply voltage in the presence of variability. Two asynchronous self-timed designs are then implemented. First, a low-energy asynchronous logic topology using sense amplifier-based pass transistor logic (SAPTL) is presented. The SAPTL structure can realize very low energy computation by using low-leakage pass transistor networks at low supply voltages. The introduction of asynchronous operation in SAPTL further improves energy-delay performance without a significant increase in hardware complexity. The proposed self-timed SAPTL architectures provide robust and efficient asynchronous computation using a glitch-free protocol to avoid possible dynamic timing hazards. Second, an asynchronous neural signal processor is presented to dynamically minimize leakage and to self-adapt to process variations and different operating conditions. The self-timed processor demonstrates robust sub-threshold operation down to 0.25V, while consuming only 460nW in a 65nm CMOS technology, representing a 4.4X reduction in power compared to the state-of-the-art designs. The proposed asynchronous design approach enables CMOS circuits to fully benefit from continued technology scaling and realize ultra-low voltage operation, without incurring the leakage and variability issues associated with conventional synchronous implementations.

Towards an Ultra-Low Energy Computation with Asynchronous Circuits

Towards an Ultra-Low Energy Computation with Asynchronous Circuits PDF Author: Tsung-Te Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Book Description
Emerging biomedical applications would benefit from the availability of digital processors with substantially improved energy-efficiency. One approach to realize ultra-low energy processors is to scale the supply voltage aggressively to near or below the transistor threshold, yet the major increase in delay variability under process, voltage and temperature variations combined with the dominance of leakage power makes robust near- and sub-threshold computations and further voltage scaling extremely challenging. This research focuses on the design and implementation of robust and energy-efficient computation architectures by employing an asynchronous self-timed design methodology. A statistical framework is first presented to analyze the energy and delay of CMOS digital circuits considering a variety of timing methodologies. The proposed analysis framework combines variability and statistical performance models, which enables designers to efficiently evaluate circuit performance, and determine the optimal timing strategy, pipeline depth and supply voltage in the presence of variability. Two asynchronous self-timed designs are then implemented. First, a low-energy asynchronous logic topology using sense amplifier-based pass transistor logic (SAPTL) is presented. The SAPTL structure can realize very low energy computation by using low-leakage pass transistor networks at low supply voltages. The introduction of asynchronous operation in SAPTL further improves energy-delay performance without a significant increase in hardware complexity. The proposed self-timed SAPTL architectures provide robust and efficient asynchronous computation using a glitch-free protocol to avoid possible dynamic timing hazards. Second, an asynchronous neural signal processor is presented to dynamically minimize leakage and to self-adapt to process variations and different operating conditions. The self-timed processor demonstrates robust sub-threshold operation down to 0.25V, while consuming only 460nW in a 65nm CMOS technology, representing a 4.4X reduction in power compared to the state-of-the-art designs. The proposed asynchronous design approach enables CMOS circuits to fully benefit from continued technology scaling and realize ultra-low voltage operation, without incurring the leakage and variability issues associated with conventional synchronous implementations.

Low-Power Electronics Design

Low-Power Electronics Design PDF Author: Christian Piguet
Publisher: CRC Press
ISBN: 1420039555
Category : Technology & Engineering
Languages : en
Pages : 912

Book Description
The power consumption of integrated circuits is one of the most problematic considerations affecting the design of high-performance chips and portable devices. The study of power-saving design methodologies now must also include subjects such as systems on chips, embedded software, and the future of microelectronics. Low-Power Electronics Design covers all major aspects of low-power design of ICs in deep submicron technologies and addresses emerging topics related to future design. This volume explores, in individual chapters written by expert authors, the many low-power techniques born during the past decade. It also discusses the many different domains and disciplines that impact power consumption, including processors, complex circuits, software, CAD tools, and energy sources and management. The authors delve into what many specialists predict about the future by presenting techniques that are promising but are not yet reality. They investigate nanotechnologies, optical circuits, ad hoc networks, e-textiles, as well as human powered sources of energy. Low-Power Electronics Design delivers a complete picture of today's methods for reducing power, and also illustrates the advances in chip design that may be commonplace 10 or 15 years from now.

Asynchronous Digital Circuit Design

Asynchronous Digital Circuit Design PDF Author: Graham Birtwistle
Publisher: Springer Science & Business Media
ISBN: 144713575X
Category : Mathematics
Languages : en
Pages : 272

Book Description
As the costs of power and timing become increasingly difficult to manage in traditional synchronous systems, designers are being forced to look at asynchronous alternatives. Based on reworked and expanded papers from the VII Banff Higher Order Workshop, this volume examines asynchronous methods which have been used in large circuit design, ranging from initial formal specification to more standard finite state machine based control models. Written by leading practitioners in the area, the papers cover many aspects of current practice including practical design, silicon compilation, and applications of formal specification. It also includes a state-of-the-art survey of asynchronous hardware design. The resulting volume will be invaluable to anyone interested in designing correct asynchronous circuits which exhibit high performance or low power operation.

Completion Detection in Asynchronous Circuits

Completion Detection in Asynchronous Circuits PDF Author: Pallavi Srivastava
Publisher: Springer Nature
ISBN: 3031183975
Category : Technology & Engineering
Languages : en
Pages : 129

Book Description
This book is intended for designers with experience in traditional (clocked) circuit design, seeking information about asynchronous circuit design, in order to determine if it would be advantageous to adopt asynchronous methodologies in their next design project. The author introduces a generic approach for implementing a deterministic completion detection scheme for asynchronous bundled data circuits that incorporates a data-dependent computational process, taking advantage of the average-case delay. The author validates the architecture using a barrel shifter, as shifting is the basic operation required by all the processors. The generic architecture proposed in this book for a deterministic completion detection scheme for bundled data circuits will facilitate researchers in considering the asynchronous design style for developing digital circuits.

Ultra-low Power and Radiation Hardened Asynchronous Circuit Design

Ultra-low Power and Radiation Hardened Asynchronous Circuit Design PDF Author: Liang Zhou
Publisher:
ISBN: 9781267310583
Category : Asynchronous circuits
Languages : en
Pages : 122

Book Description
This dissertation proposes an ultra-low power design methodology called bit-wise MTNCL for bit-wise pipelined asynchronous circuits, which combines multi-threshold CMOS (MTCMOS) with bit-wise pipelined NULL Convention Logic (NCL) systems. It provides the leakage power advantages of an all high-Vt implementation with a reasonable speed penalty compared to the all low-Vt implementation, and has negligible area overhead. It was enhanced to handle indeterminate standby states. The original MTNCL concept was enhanced significantly by sleeping Registers and Completion Logic as well as Combinational circuits to reduce area, leakage power, and energy per operation. This dissertation also develops an architecture that allows NCL circuits to recover from a Single Event Upset (SEU) or Single Event Latchup (SEL) fault without any data loss. Finally, an accurate throughput derivation formula for pipelined NCL circuits was developed, which can be used for static timing analysis.

Low-Power Processors and Systems on Chips

Low-Power Processors and Systems on Chips PDF Author: Christian Piguet
Publisher: CRC Press
ISBN: 1351836471
Category : Technology & Engineering
Languages : en
Pages : 454

Book Description
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, this volume addresses the design of low-power microprocessors in deep submicron technologies. It provides a focused reference for specialists involved in systems-on-chips, from low-power microprocessors to DSP cores, reconfigurable processors, memories, ad-hoc networks, and embedded software. Low-Power Processors and Systems on Chips is organized into three broad sections for convenient access. The first section examines the design of digital signal processors for embedded applications and techniques for reducing dynamic and static power at the electrical and system levels. The second part describes several aspects of low-power systems on chips, including hardware and embedded software aspects, efficient data storage, networks-on-chips, and applications such as routing strategies in wireless RF sensing and actuating devices. The final section discusses embedded software issues, including details on compilers, retargetable compilers, and coverification tools. Providing detailed examinations contributed by leading experts, Low-Power Processors and Systems on Chips supplies authoritative information on how to maintain high performance while lowering power consumption in modern processors and SoCs. It is a must-read for anyone designing modern computers or embedded systems.

Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science

Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science PDF Author: Ford Lumban Gaol
Publisher: Springer Science & Business Media
ISBN: 364228308X
Category : Technology & Engineering
Languages : en
Pages : 497

Book Description
The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical. Computational Science should enhance the quality of human life, not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science. This book is a compilation of some recent research findings in computer application and computational science. This book provides state-of-the-art accounts in Computer Control and Robotics, Computers in Education and Learning Technologies, Computer Networks and Data Communications, Data Mining and Data Engineering, Energy and Power Systems, Intelligent Systems and Autonomous Agents, Internet and Web Systems, Scientific Computing and Modeling, Signal, Image and Multimedia Processing, and Software Engineering.

Ultra Low Power Bioelectronics

Ultra Low Power Bioelectronics PDF Author: Rahul Sarpeshkar
Publisher: Cambridge University Press
ISBN: 1139485237
Category : Technology & Engineering
Languages : en
Pages : 909

Book Description
This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.

ETCMOS 2016 Presentation Abstracts

ETCMOS 2016 Presentation Abstracts PDF Author: ETCMOS
Publisher: ETCMOS Services Inc.
ISBN: 1927500796
Category :
Languages : en
Pages : 94

Book Description
Abstracts for presentations at the ETCMOS 2016 conference in Montreal, Canada, May 25 - 27, 2016.

2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems

2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems PDF Author:
Publisher:
ISBN: 9781538627495
Category :
Languages : en
Pages :

Book Description