Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime PDF full book. Access full book title Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime by Thi Ha Kyaw. Download full books in PDF and EPUB format.

Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime

Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime PDF Author: Thi Ha Kyaw
Publisher: Springer
ISBN: 3030196585
Category : Computers
Languages : en
Pages : 116

Book Description
This thesis devotes three introductory chapters to outlining basic recipes for constructing the quantum Hamiltonian of an arbitrary superconducting circuit, starting from classical circuit design. Since a superconducting circuit is one of the most promising platforms for realizing a practical quantum computer, anyone who is starting out in the field will benefit greatly from this introduction. The second focus of the introduction is the ultrastrong light-matter interaction (USC), where the latest developments are described. This is followed by three main research works comprising quantum memory in USC; scaling up the 1D circuit to a 2D lattice configuration; creation of Noisy Intermediate-Scale Quantum era quantum error correction codes and polariton-mediated qubit-qubit interaction. The research work detailed in this thesis will make a major contribution to the development of quantum random access memory, a prerequisite for various quantum machine learning algorithms and applications.​

Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime

Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime PDF Author: Thi Ha Kyaw
Publisher: Springer
ISBN: 3030196585
Category : Computers
Languages : en
Pages : 116

Book Description
This thesis devotes three introductory chapters to outlining basic recipes for constructing the quantum Hamiltonian of an arbitrary superconducting circuit, starting from classical circuit design. Since a superconducting circuit is one of the most promising platforms for realizing a practical quantum computer, anyone who is starting out in the field will benefit greatly from this introduction. The second focus of the introduction is the ultrastrong light-matter interaction (USC), where the latest developments are described. This is followed by three main research works comprising quantum memory in USC; scaling up the 1D circuit to a 2D lattice configuration; creation of Noisy Intermediate-Scale Quantum era quantum error correction codes and polariton-mediated qubit-qubit interaction. The research work detailed in this thesis will make a major contribution to the development of quantum random access memory, a prerequisite for various quantum machine learning algorithms and applications.​

Scalable Quantum Computers

Scalable Quantum Computers PDF Author: Samuel L. Braunstein
Publisher: Wiley-VCH
ISBN: 9783527403219
Category : Science
Languages : en
Pages : 0

Book Description
Quantum computers hold the promise of solving problems that would otherwise be intractable with conventional computers. Some prototypes of the simplest elements needed to build a quantum computer have already been implemented in the laboratory. The efforts now concentrate on combining these elements into scalable systems. In addition, alternative routes to creating large scale quantum computers are continuously being developed. This volume gives a cross-section of recent achievements in both the theory and the practical realization of quantum computing devices. Samuel L. Braunstein (Reader, University of Wales, Bangor, and editor of the book "Quantum Computing - Where do we want to go tomorrow") and Hoi-Kwong Lo (Chief Scientist, MagiQ Technologies, Inc., NY) invited experts across many disciplines involved in the development of quantum computers to review their proposals in a manner accessible to the non-expert. Breaking with tradition, this book not only contains proposals, but a set of independent expert evaluations of these ideas as well. As a by-product this volume facilitates a comparison between the widely varying disciplines covered, including: ion traps, cavity quantum electrodynamics, nuclear magnetic resonance, optical lattices, quantum dots, silicon systems, superconductivity and electrons on helium.

Scalability of Superconducting Qubits for Noisy Intermediate Scale Quantum Computers

Scalability of Superconducting Qubits for Noisy Intermediate Scale Quantum Computers PDF Author: Ananyo Banerjee
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
In the evolving landscape of quantum computing, the emergence of quantum computers in the Noisy Intermediate Scale Quantum (NISQ) regime marks a significant stride. Superconducting qubits have garnered popularity in both academic and industrial groups. However, the journey towards achieving a large-scale, fully error-corrected quantum computer faces challenges. This thesis addresses some of these challenges within an academic setup. One prominent challenge with superconducting qubits is Purcell decay. This work aims to tackle the issue by delving into the implementation of on-chip Purcell filters with Transmon qubits. The overarching goal is to pave the way for further scalability by ensuring compatibility of these designs with scalability plans. The thesis also introduces novel architectures for superconducting qudit processors, focusing on their already presented implementation in 3D cavities. Efforts are directed towards transitioning these processors to a planar platform for enhanced scalability. The coupling of these processors to environment is explored using coplanar waveguides, with the system's physics governed by the principles of circuit quantum electrodynamics. Finally, the thesis also delves into the packaging of planar qubit devices, aiming to facilitate easy scalability. This platform enables interfacing the devices with control equipment, shielding from stray fields, and offers the essential thermal link to the dilution refrigerator where they are housed. Each section of the thesis presents results emphasizing potential areas for improvement and refinement of the systems.

Quantum Computer Systems

Quantum Computer Systems PDF Author: Yongshan Ding
Publisher: Springer Nature
ISBN: 303101765X
Category : Technology & Engineering
Languages : en
Pages : 203

Book Description
This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.

A Scalable Quantum Computation Platform

A Scalable Quantum Computation Platform PDF Author: Sara Lambert Mouradian
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Book Description
Quantum computation and communication systems exploit quantum mechanical effects to surpass their classical counterparts in certain applications. However, while proof-of-principle experimental demonstrations have been performed, these are limited to a handful of nodes with limited - and often immutable - connectivity. Here we demonstrate an integrated platform for solid state quantum information processing. Pre-characterized solid state quantum nodes (nitrogen vacancy centers in diamond nanophotonic structures) are placed into a photonic integrated circuit which allows for low-loss and phase-stable collection, routing, and detection of photons as well as on-chip state manipulation and classical control. Moreover, the fabrication of high-quality photonic resonators in diamond allows for the increased emission and collection rates of photons coherent with the spin state. These two advances promise an on-chip entanglement rate much larger than the decoherence rate, allowing the creation and maintenance of cluster states for quantum computation.

Phonon-based Scalable Platform for Chip-scale Quantum Computing

Phonon-based Scalable Platform for Chip-scale Quantum Computing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

Manipulating Quantum Systems

Manipulating Quantum Systems PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309499542
Category : Science
Languages : en
Pages : 315

Book Description
The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Molecular Quantum Dynamics

Molecular Quantum Dynamics PDF Author: Fabien Gatti
Publisher: Springer Science & Business Media
ISBN: 3642452906
Category : Science
Languages : en
Pages : 281

Book Description
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Fundamentals and Frontiers of the Josephson Effect

Fundamentals and Frontiers of the Josephson Effect PDF Author: Francesco Tafuri
Publisher: Springer Nature
ISBN: 3030207269
Category : Technology & Engineering
Languages : en
Pages : 859

Book Description
This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.

Quantum Confined Excitons in 2-Dimensional Materials

Quantum Confined Excitons in 2-Dimensional Materials PDF Author: Carmen Palacios-Berraquero
Publisher: Springer
ISBN: 3030014827
Category : Computers
Languages : en
Pages : 125

Book Description
This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.